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In order to explain the intricate dance of intramolecular (intra-proton-pair) H–H separations ob-
served in a numerical laboratory of calculationally preferred static hydrogen structures under pres-
sure, we examine two effects through discrete molecular models. The first effect, we call it physical,
is of simple confinement. We review a salient model already in the literature, that of LeSar and
Herschbach, of a hydrogen molecule in a spheroidal cavity. As a complement, we also study a hydro-
gen molecule confined along a line between two helium atoms. As the size of the cavity/confining
distance decreases (a surrogate for increasing pressure), in both models the equilibrium proton sepa-
ration decreases and the force constant of the stretching vibration increases. The second effect, which
is an orbital or chemical factor, emerges from the electronic structure of the known molecular transi-
tion metal complexes of dihydrogen. In these the H–H bond is significantly elongated (and the vibron
much decreased in frequency) as a result of depopulation of the σ g bonding molecular orbital of H2,
and population of the antibonding σ u* MO. The general phenomenon, long known in chemistry, is
analyzed through a specific molecular model of three hydrogen molecules interacting in a ring, a
motif found in some candidate structures for dense hydrogen. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3679736]

I. INTRODUCTION

A. Reminder

In the preceding paper,1 we examined the evolution of
the shortest and second shortest proton-proton separations in
those structures predicted by Pickard and Needs2 to be the
most stable arrangements for solid hydrogen under pressure.
The first corresponds to the proton-proton separations within
H2 units and the second corresponds to the shortest proton-
proton separations between neighboring H2 units. As in the
preceding paper, and with full awareness of the limitations
of using molecular language at high hydrogen densities, we
will refer to these in the following as the intramolecular and
shortest intermolecular H–H separations, respectively.

The theoretically determined static structures serve as a
kind of structural laboratory for learning more about hydro-
gen under pressure. By following the most stable structure
of solid hydrogen between 1 atm and 500 GPa, the short-
est intermolecular H–H separation has been seen to decrease
with pressure, whereas the intramolecular counterpart, while
changing little in an absolute sense, at first decreases, then
increases, but yet again decreases. We introduced in the first
paper1 a convenient measure of this behavior, an equalization
function ξ (P), which takes on values between 0 and 1. Assum-
ing that the structures studied are reasonable (and there are
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experimental points of contact that provide confirmation that
we will come to below), hydrogen enters a metallic state while
the degree of equalization of the intramolecular and shortest
intermolecular H–H separations remains only ∼90%. In other
words, hydrogen seems to resist perfect equalization of its
H–H distances even as it metallizes.

The aim of the present paper is to present discrete mod-
els which will assist in delineating the physical and chemical
mechanisms at work in altering the H–H separations as pres-
sure is applied, and thereby to hone our understanding of the
role of the different regimes of local density which affect the
intramolecular H–H separations.

B. Experimental information

Experimentally, the evolution with pressure in solid hy-
drogen of the intramolecular H–H distances—or the H–H
bond length of the H2 units—and their associated binding has
been followed spectroscopically, rather than by x-ray diffrac-
tion (the scattering from H being weak). The roton, libron, and
vibron frequencies are relatively easy to observe. The vibron
frequency of a H2 molecule, whether isolated or in a solid,
is related to, to use a classical term, the H–H force constant,
whereas the roton frequency gives us mainly the moment of
inertia of the molecule and from it the H–H separation. The
frequencies of the roton modes are much lower than those of
the vibrons (by about a factor of 10), and the associated rela-
tive displacements can be quite substantial.

The link between bond length and bond strength (a longer
bond corresponding to a weaker bond) is known as Badger’s
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rule,3–5 and has long been a part of chemistry and physics,
even as exceptions are well known.6 A theory of the man-
ner in which the intermolecular forces affect the infrared and
Raman spectra of the solid compared to those of a free H2

molecule in a gas was developed by Van Kranendonk.7–10 The
analysis by Loubeyre et al.11 and Grazzi et al.12 of the roton
bands measured by Silvera and Wijngaarden13 in para-H2 at
T = 6 K indicates that the intramolecular H–H separation de-
creases as P rises from 1 atm to 30 GPa, but thereafter in-
creases. And the Raman spectra of solid normal H2 recorded
by Sharma et al.14, 15 at T = 298 K also contain indications of
intramolecular H–H stiffening from 5.5 GPa (the pressure of
solidification at T = 295 K) to 36 GPa (rs = 1.74), followed
by weakening with increased pressure.

II. METHODS AND COMPUTATIONAL DETAILS

The discrete molecular systems studied here were mod-
eled using the GAUSSIAN 03 package.16 Given a statement
of the nuclei involved, the total number of electrons in the
system, and a trial starting geometry, the optimal geometries
were computed within the Born-Oppenheimer framework,
using methods based either on the Møller-Plesset perturba-
tion theory,17 with corrections at the second-order,18–21 or
with the density functional theory,22 using the B3LYP hybrid
functional.23–25 In each case, a triple-zeta basis set, with ad-
ditional diffuse and polarization functions (6-311++G(d,p)),
has been used. The optimizations were performed under ge-
ometrical constraints used to reflect the effect of pressure.
Further details will be given later on the actual constraints
chosen. For the last model we present Mulliken overlap pop-
ulation (MOP), Mayer bond order (MBO), and natural bond
orbital (NBO) (Ref. 26) population analyses, performed to
study the evolution of intramolecular and intermolecular H–H
bonding.

III. TWO COMPETING EFFECTS INFLUENCING
THE H2 BOND LENGTH

As mentioned previously, both experimental
measurements11, 13 and theoretical modeling1 suggest
that under pressure (and while passing through several
distinct phases) the evolution of the intramolecular H–H
separation in solid hydrogen proceeds through three main
regimes: In the first (below P = 30–40 GPa according to
the experimental evidence—and shifted to higher pressure
(∼100 GPa) in our theoretical modeling), the H–H bond is
shortened and, in agreement with Badger’s rule, stiffened;
in a second regime it is lengthened and also weakened,
but only to later shorten further in a third regime at still
higher pressures. We now turn to an explanation of these
experimental and theoretical observations, using a sequence
of numerical experiments performed on discrete models for
the molecules in solid hydrogen.

A. Shortening and stiffening of the intramolecular
H–H bond at low pressures

Consider now what happens to a normal diatomic poten-
tial energy curve, E(r), (Fig. 1, solid line) as other molecules

FIG. 1. Schematic representation of the “physical wall” (black vertical bar)
for nuclear motion formed around a diatomic molecule by surrounding
molecules under increase in pressure. The solid black line represents the po-
tential energy curve for an isolated diatomic molecule and the dashed line
that of a diatomic molecule experiencing the presence of other molecules in
its neighborhood.

begin to invade the neighborhood of a chosen molecule.
Because of Pauli repulsion, it is very unfavorable for two
molecules to be too close to each other and they will tend to
resist such a merger. A molecule’s extension is thus expected
to be constrained by other neighboring molecules as pressure
increases.

The thick vertical bar at the right in Fig. 1 is a symbolic
“pressure wall” originating with the presence of surround-
ing and encroaching molecules. Note that by reciprocity, the
diatomic molecule whose potential energy curve is plotted
in Fig. 1 constrains in its turn the extension of surround-
ing molecules. The “pressure wall” will affect the molecule
most on the dissociative, low energy side of E(r) (Fig. 1).
Large intramolecular separations at fixed density are thus ex-
pected to be subject to an energy penalty. The result is that
under pressure a new effective E′(r) results (the dashed line).
Clearly E′(r) will have a shorter equilibrium separation, and
a higher “force constant” in the harmonic approximation than
will E(r).

1. A molecule in a spheroidal box

The effect of the “physical wall” described qualitatively
above on the vibrational properties of H2 molecules has been
investigated computationally by LeSar and Herschbach in
1981.27 They considered one H2 molecule and defined a con-
fining spheroidal boundary around it, placing the two protons
at its foci, as sketched in Fig. 2.

The bounding region was made rigid by imposing an in-
finite potential outside of it. The effect of pressure was then
modeled by varying the semimajor axis length 1

2 Rλ0 (λ0

> 1) of the spheroidal region. For several imposed values
of the semimajor axis length, the optimal value of the in-
tramolecular H–H separation—R—was computed (and thus
the optimal eccentricity 1/λ0 of the spheroid), by a variational
calculation, employing a James-Coolidge wave function.28

The total energy curves that were obtained for the protons are
reproduced in Fig. 3.
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FIG. 2. H2 molecule confined within a rigid prolate spheroidal boundary.
The parameter λ0 is related to the eccentricity of the spheroid. Protons reside
at H and H.

As the size of the constraining spheroid decreases (i.e., as
the length of the semimajor axis decreases), the optimal H–H
separation of the H2 molecule shortens. Because for decreas-
ing size, the constraint exerted on the H2 molecule is more and

FIG. 3. Energy curves for the protons of a H2 molecule (solid curves) and of
a H2

+ molecular ion (dashed curves) in spheroidal bounding regions of dif-
ferent sizes as characterized by their major axis lengths Rλ0, with respect to
the internuclear distance R. Note that the distances are expressed in Bohrs. As
Rλ0 → +∞, the spheroidal box becomes spherical. Reprinted with permis-
sion from R. LeSar and D. R. Herschbach, J. Phys. Chem. 85, 2798 (1981).
Copyright 1981 American Chemical Society.

more severe, the energy curve globally increases in energy.
Below a certain volume of the boundary region, the minimum
of the energy curve for the protons arising from the optimal
electron density of two electrons becomes even higher in en-
ergy than that of two unconstrained protons at infinite separa-
tion. Nonetheless, there is still a clear preference for a distinct
H–H separation, implying the existence of a H–H bond. In
fact, the shape of the wells clearly shows that as the size of
the boundary region decreases, the H–H bond shortening is
correlated with a stiffening of the bond, this also reflected in
the effective spring constant k.

2. A molecule in a softer box

The same trend observed by LeSar and Herschbach can
also be obtained by constructing a “molecular physical wall,”
which, unlike the previous example, can exhibit a varying de-
gree of softness. As a specific example, consider the follow-
ing very simple model: two helium atoms surround a pair of H
atoms, all on a line as sketched in Fig. 4. The heliums provide
the requisite Pauli repulsion, but are “softer” than the rigid
wall introduced above.

To simulate an increase in pressure, we fix the distance
d between the outer He atoms and the center of the pair of H
atoms at four different values: 3.0 Å, 2.0 Å, 1.5 Å, and 1.0 Å.
We then optimize under the constraint of a fixed distance d
the H–H separation rH–H. Then, for each d, we perform single
point calculations scanning the rH–H distance around its opti-
mal value req. The computations here were carried out at the
level of the Møller-Plesset perturbation theory17 with correc-
tions at the second-order18 (MP2/6-311++G(d,p)). The en-
ergy curves obtained are plotted in Fig. 5.

From the resulting curves were extracted (i) the optimal
H–H separation (req), and (ii) its equivalent force constant (k),
by fitting the lower region of the wells by a quadratic func-
tion of the form E − Eeq = 1

2k(rH−H − req)2. The results are
given in Table I.

As expected, the smaller is req, the larger is k. In other
words, the shorter the H–H bond, the stiffer is the spring de-
scribing that bond. We might mention here that we tested the
implicit Badger relationship between k and req (as detailed in
Ref. 3) and found that it was quite well satisfied in this model.

Our first thought was that He atoms would not interact
significantly with the H2. At extreme pressure (here modeled
by a small d distance) in fact we do observe some electron
transfer at low d from the atomic 1s orbitals of the He atoms

FIG. 4. Two He atoms surround a H atom pair in a collinear arrangement:
a primitive molecular model considered in studying the shortening of the H2
bond length under pressure.
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FIG. 5. Computed energy curves associated with the elongation of the cen-
tral H–H entity of the system sketched in Fig. 4, keeping the two helium
atoms fixed, under the constraints d = 3.0 Å (filled squares), 2.0 Å (empty
circles), 1.5 Å (crosses), and 1.0 Å (filled circles) (see Fig. 4 for the defini-
tion of d). In each case, the potential energy for the protons is expressed as
an energy relative to the energy at the constrained equilibrium (Eeq).

into the σ u*, formally unfilled molecular orbital of the H2

molecule. But this is anticipating Sec. III B.
Let us summarize what we learn from those two nu-

merical experiments—one in the literature, one our own.
Strict spatial confinement of a H2 molecule—in a nuclear
and electronic sense—tends to shorten and stiffen the H–H
bond relative to that of a free H2 molecule. As the size of
the constraining region decreases, both the H–H shortening
and concomitant stiffening rise in scale. Similar effects are
observed in the case of “softer” spatial confinement arising
from the presence of rather inert chemical species in the
vicinity. This invasion by neighboring molecules is a natural
consequence of pressure increase in molecular solids. We
believe that soft molecular spatial confinement is at work
in solid hydrogen in the pressure regime 1 atm to 30 GPa
where the intramolecular H–H separation shortens and the
interaction stiffens as the pressure increases. This is recorded
in the experiments by the increase of both the vibron (higher
bond force constant leading to a higher energy vibron) and
also the roton frequencies under pressure.

TABLE I. Optimal values for rH–H under a constraint of fixed d, and related
force constant k of the central H–H pair deduced from a fit of the lower region
of the wells plotted in Fig. 5 by a quadratic function.

d rH–H,eq k

(Å) (Å) (eV Å−2)

3.0 0.7377 40.6
2.0 0.7194 47.0
1.5 0.6680 63.0
1.0 0.5422 150.8

FIG. 6. Three examples of side-on bonded di-hydrogen complexes. Here, iPr
stands for iso-propyl (–CH–(CH3)2); CO for carbon monoxide. Plain lines
indicate relatively strong bonds between the transition element center and the
atoms/groups of atoms to which it is bonded (ligands). Dashed lines indicate
weaker bonds.

B. Lengthening and softening of the intramolecular
H–H bond at higher pressures

1. Side-on bonded H2 molecules in organometallic
complexes: An important “molecular” interlude

Because of their connections to the dense hydrogen prob-
lem it is time to introduce here a group of known dis-
crete molecules in which an intact but strongly perturbed H2

molecule (or several) is (are) bonded to a transition element
center M, but in such a way that the H–H bond of the H2

molecule is actually perpendicular to the M–(H2) bond (see
Fig. 6).29–31 They are called η2 or side-on bonded dihydrogen
complexes. To look at these is not a digression at all; the be-
havior of these systems is useful in contemplating the emerg-
ing behavior in pure hydrogen itself under pressure.

The first of these complexes to be prepared and charac-
terized was [W(CO)3(PiPr3)2(H2)], in a study by Kubas in
1984.32 In the same year, an independent analysis by Sail-
lard et al. laid the theoretical foundation for an understanding
of their electronic structure.33 Since then, several hundred H2

complexes have been synthesized. Some selected structures
are shown in Fig. 6.

The H–H distance in these has in some cases been
quite accurately determined from neutron diffraction and
also solid-state NMR measurements. The H–H separation
is typically 0.82–0.89 Å—which is 10%–20% longer than
in an isolated H2 molecule—with less elongation in weakly
bonded species such as Cr(CO)5(H2) (available only as matrix
isolated species)34 and with a more perturbed, longer H2 sep-
aration in a few instances such as ReH5(H2){P(p-tolyl)3}2.35

The H2 vibron in these molecules is also perturbed far more
than in the range of high pressure studies we discussed
above—in fact, it is often as low as ∼3000 cm−1 (in an
isolated H2 molecule it is 4161 cm−1).

The characteristics of the bonding in these side-on
bonded dihydrogen complexes are sketched out in Fig. 7: if
one considers an octahedral complex of ML5(H2) formula
where L is a generic notation to designate an atom or a group
of atoms bonded to M (a ligand), the nature of the bonding
between M and H2 can be deduced from the interaction be-
tween the ML5 and H2 fragments. There is electron donation
from the ML5 fragment into H2 σ u*, acceptance by an MLn

orbital from H2 σ g, both lengthening the H–H bond relative
to the separation in the free H2 molecule.

Although there is no question that the side-on mode of
coordination of the H2 unit to the transition metal element
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FIG. 7. A general molecular orbital (MO) interaction diagram for ML5(H2) octahedral complexes constructed from an ML5 and a H2 fragment (adapted from
Ref. 33). Here, M is a generic transition element atom, L is an associated ligand, σ g and σ u* are the bonding and antibonding H2 molecular orbitals. Black and
white indicate phases (and their differences) of the wave functions; no implications are being inferred of the coefficient amplitudes. The dashed lines simply
indicate the presence of significant interactions.

M finds its origin in the orbital interactions highlighted in
Fig. 7, it should be noted that the anisotropy of the dipole-
polarizability also favors this side-on arrangement. At longer
distances between the H2 molecule and the transition metal
element, now out of the range of substantial overlap between
the orbitals of each of the ML5 and H2 fragments, this con-
tribution is likely to govern their relative orientation; at the
anticipated short separations of both the molecular complex
and hydrogen under some pressure, this electrostatic factor is
not likely to be important.

2. The chemical or orbital model for bond elongation
in hydrogen under pressure

The bonding model of Fig. 7 for a metal fragment with
its associated ligands, interacting with a H2 molecule, is
in fact closely related to what is happening when two H2

molecules—let us call them A and B—are forced to inter-
act at high pressure, provided that the bandwidths induced
by intermolecular interactions are themselves small com-
pared to the bandgap. In the study by Pickard and Needs,2

among the four molecular structures considered, only the
Cmca structure,36 which is the most stable from P = 385
GPa to P = 490 GPa, is metallic within its range of stability.
While retaining pairing, it is estimated to metallize by band
overlap around P = 410 GPa.2, 36, 37 Over most of the pressure
range we explore here orbital interactions are likely to give
a good qualitative description of the development of the elec-
tronic structure. The progression of the analysis is indicated in

Fig. 8. As the interaction between the two H2 molecules A and
B takes place, the mutual interactions between electrons and
nucleus of A and also those of B can be treated as a perturba-
tion of the interactions already involved in molecules A and
B, separately.

First, at the left of Fig. 8, there is zeroth order mixing of
the degenerate levels of the two H2 molecules—A and B—
forming the familiar σ g, A ± σ g, B and σ u, A* ± σ u, B* com-
binations, where σ g,A and σ g,B are the bonding molecular
orbitals (MOs) of the unperturbed H2 molecules A and B, re-
spectively. Here, σ u,A* and σ u,B* are the corresponding anti-
bonding MOs. There is no electron transfer at this conceptual
stage. The resulting molecular orbitals then interact (depicted
in the middle panel of Fig. 8) in a typical second-order pertur-
bation theory manner, σ g, A + σ g, B mixing into itself σ u, A*
− σ u, B*, and σ g, A − σ g, B mixing with σ u, A* + σ u, B*. The
final result is shown at the right in Fig. 8. It is at this stage that
electron transfer occurs, from σ g to σ u* levels. In general, in-
teraction implies mixing, which in turn implies delocalization
along with partial electron transfer accompanying it.

3. A numerical experiment, implementing
the orbital model

According to our earlier structural analysis1 of the
Pickard and Needs proposals for crystalline hydrogen in
the pressure from 100 GPa to 400 GPa, the H2 bond
length increases, from 0.733 Å to 0.780 Å. Once again, we
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FIG. 8. Molecular orbital diagram describing the interaction between two H2 molecules in a linear arrangement. The perturbation is the interaction of the two
molecules with each other. At left, in zeroth order of degenerate perturbation theory, the wave functions/levels are prepared for interaction by mixing σ g of
one H2 molecule with its degenerate partner in the second molecule, and a similar mixing among the two σ u* orbitals. In the middle and at right, second-order
interactions are turned on, indicated by thin dashed lines. These effectively arise from mixing of σ u* combinations of one H2 with σ g of the other H2. The thick
arrows in the middle diagram indicate the progression (in energy) of the levels as a consequence of second-order mixing.

consider a discrete molecular model, but now a ring of three
H2 molecules arranged in a D3h geometry, and as sketched in
Fig. 9.

This model, an arrangement of three H2 molecules into
triangles, has been chosen because in a simple way it captures
a motif that is found in two of the Pickard and Needs struc-
tures for crystalline hydrogen, namely, the C2/c and Cmca-12
structures, represented in Fig. 10, which exhibit elongated H2

bonds.

FIG. 9. D3h arrangement of three H2 molecules, also providing the defini-
tions of d, RH2–H2, and rH–H.

This arrangement is reminiscent of the model ring of six
hydrogen atoms in the form of a regular hexagon, as first in-
vestigated by Mattheiss in 1961 (Ref. 38) and a few years later
by Moskowitz.39 It is interesting to note that in 1981, LeSar
and Herschbach40 predicted that “solid molecular hydrogen at
high pressures might undergo a phase transition to form ter-
molecular complexes [(H2)3] before transition to the atomic
or metallic phase at still higher pressures.” They did this on
the basis that the regular hexagon H6 is among the H4n+2 (n
= 1–15) regular polygons, the only one found to be stable
with respect to the dissociation of one H2 molecule into two
hydrogen atoms. Our model is also related to the study by

FIG. 10. A layer of the C2/c, and Cmca-12 structures at P = 300 GPa.2 In the
C2/c structure the layers are arranged in an ABCDA fashion; in the Cmca-12
structure they are arranged in an ABA fashion.
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FIG. 11. Correlation between the H2 bond length rH–H and the intermolec-
ular distance between two H2s, RH2-H2, in the D3h arrangement of 3H2
molecules as sketched in Fig. 9. Numbers and arrows above the horizontal
line at the top of the graphic are indications of the pressures required (in
GPa) to observe the same intermolecular H–H separations in computations
of extended structures for static hydrogen in its ground state.1

Ladik et al. on the effects of disorder on rings of hydrogen
atoms.41, 42

a. Correlation between intramolecular and intermolecu-
lar H–H distances. In this molecular model, the intramolecu-
lar H–H distance—rH–H—and the shortest intermolecular H–
H distance—RH2–H2—were both optimized, while constrain-
ing the center of array to center of H2 distance d. Here,
our computations were performed at the DFT/B3LYP/6-
311++G(d,p) level of theory. Variation of d then simulates
the effect of pressure on the system. In Fig. 11 is plotted
the optimal intramolecular H–H distance rH–H with respect
to the corresponding optimal shortest intermolecular distance
between two H2 molecules: RH2–H2.

When the separation between two H2 molecules, RH2–H2,
is quite large, a decrease of the intermolecular distance results
in a decrease of the intramolecular H–H separation. But be-
low a certain intermolecular separation (∼1.6 Å), decreasing
RH2–H2 actually leads in this model to an increase of the in-
tramolecular H–H separation, in fact, exactly as is found in
solid hydrogen under pressure.1, 11, 12

b. Orbital correlation diagram for three approaching H2

molecules. This lengthening of the intramolecular H–H sep-
aration can be understood through a study of the fragment
molecular orbital interactions of the three H2 molecules. In
Fig. 12 are represented the molecular orbitals of the 3H2-
arrangement when RH2–H2 is chosen to be long with respect
to rH–H, and also when it is equal to it (symmetry D6h). The
molecular orbitals of D6h H6 are, of course, isomorphic to
the π system of benzene. The correlation between the MOs
in the two conformations is now indicated by dashed lines
in Fig. 12.

At infinite separation RH2–H2, the three H2 molecules are
non-interacting. The three occupied MOs can then be ex-

pressed as symmetry-adapted (D3h) linear combinations of the
σ g fragment MOs of each H2 molecule, and the three unoc-
cupied MOs as linear combinations of the σ u* fragment MOs
of each H2 molecule. The a1

′ and 1e′ occupied MOs are then
clearly degenerate at infinite RH2–H2, as are the 2e′ and a2

′′ un-
occupied ones. It may also be noted that as a net result the 1e′

levels in the σ g block are antibonding in the intermolecular
regions (repulsive interaction), whereas the 2e′ levels in the
σ u* block are bonding (attractive interaction). At large inter-
molecular H–H separation, overlap between orbitals of each
H2 fragment is so small that this antibonding/bonding charac-
ter in the intermolecular regions has no effect on the energy
levels. But as the distance RH2–H2 decreases, interaction in the
σ g manifold now places a1

′ below 1e′, and in the σ u* block
2e′ below a2

′′.
The repulsive interaction in the σ g block, which would

elevate the 1e′ (constructed from the σ g of H2) orbitals high
in energy in zeroth order of perturbation theory, is mitigated
by a mixing of 1e′ with 2e′ (constructed from the σ u* of H2),
stabilizing the former. The net result is a partial occupation
of the σ u* fragment MOs of each H2 molecule and a partial
depopulation of the σ g fragment MOs, concomitant with a
decrease of the antibonding character or increase of the bond-
ing character in the intermolecular regions. The extent of this
mixing increases with the decrease of the RH2–H2 intermolec-
ular distance. Accordingly, orbital interactions both weaken
the intramolecular H–H interaction and strengthen the inter-
molecular one. To put it in other words, orbital interactions
weaken existing bonds but in the process create new bonds in
the intermolecular regions.

Certainly, as the degree of equalization of RH2–H2 and
rH–H increases (modeling an increase in pressure), the coor-
dination number of the H atoms rises. The system can be
thought as having two Kékulé structures, as in benzene.43

When RH2–H2 becomes perfectly equal to rH–H, the system is of
D6h symmetry. There are then no discrete H2 molecules; the
six hydrogens are entirely equivalent. Choosing one of the
two equivalent definitions for H2 molecular fragments, and
thinking of the σ g and σ u* MOs of these fragments, then
results in population of the σ u* fragment MOs (and equal
depopulation of σ g) by 1/3 of an electron. Note that an ac-
tual optimization of the H–H distance in the D6h symme-
try, without further constraint, leads to an H–H separation of
0.992 Å.

Although the intramolecular and intermolecular H–H
separations become equalized (in this model, and also in the
structures of hydrogen under pressure that it models), the σ u*
fragment MO population remains far below 1. From this point
of view, if the H2 molecules can be thought of as dissoci-
ated, the H–H covalent bonds are not; they are simply weak-
ened (and non-bonded H–H interactions are correspondingly
strengthened). There is still H–H bonding, but perhaps one
can view this bonding as one-electron two-center, with H2

+

(rH–H = 1.052 Å) as a model. Or one can also think of each of
the H2 molecules as “partially excited,” σ g electrons shifted
to σ u*.

c. Intramolecular and intermolecular bond indices. The
weakening of the intramolecular H–H bonds as the inter-
molecular separations decrease is a natural consequence of
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FIG. 12. Correlation diagram between the molecular orbitals (MOs) of 3H2 in a D3h configuration when the intermolecular H–H distance is large with respect
to the intramolecular counterpart (left) and when it is of the same order, and actually identical (right). Each molecular orbital is labeled in the D3h point group
of symmetry. Black and white again indicate phases of the wave function. See text for an explanation of the orbital drawings.

the induced electronic redistribution which, under the con-
straint of conserving the total number of electrons, tends to
strengthen the intermolecular H–H interactions. One way to
see this is to follow the evolution of intramolecular and inter-
molecular bond indices as the degree of equalization of the
intramolecular and shortest intermolecular H–H separations
increases.

Several bond order indices, correlated with bond
strength, have been developed in quantum chemistry since
the late 1930s. Oldest among these is the Mulliken overlap
population (MOP) (Ref. 44) between a pair of atoms A–B.
Other popular indices are the Wiberg45 (WBO) and the Mayer
(MBO) (Refs. 46–49) bond order indices. Their definitions
are now given.

In the linear combination of atomic orbitals approxima-
tion, the wave function for an N-electron molecular system
can be expressed as a Slater determinant constructed from
N molecular spin-orbitals. The space part of these molecu-
lar spin-orbitals—the molecular orbitals—can in turn be ex-
pressed using a basis of atomic functions, i.e., as linear com-
binations of atomic orbitals:

φi (�r) =
Nbasis∑
μ=1

ciμχμ (�r)

with φi being the ith molecular orbital, χμ being the μth
atomic orbital in a basis of atomic function of dimension
Nbasis, and ciμ being the coefficient of χμ in φi.

The density matrix (D) and overlap matrix (S) elements
are then defined, respectively, as

Dμν =
Nbasis∑
i=1

niciμc∗
iν

with ni being the occupation of the ith molecular orbital φi,
and for the overlap matrix

Sμν =
∫

χμ (�r) χ∗
ν (�r) d�r.

In this framework, the WBO, MBO, and MOP between a
pair of atoms A–B are defined, respectively, as

WBOAB =
∑
μ∈A

∑
ν∈B

(Dμν)2,

MBOAB =
∑
μ∈A

∑
ν∈B

(DS)μν (DS)νμ,

and

MOPAB =
∑
μ∈A

∑
ν∈B

DμνSμν.

By definition the WBO takes on positive values only,
while the MBO and the MOP can be negative. Note that with
this definition, the WBO has to be computed within an or-
thogonal basis. We have computed it in the NBO basis.50

Figure 13 shows the evolution of the three bond order
indices in the D3h-3H2 model as d decreases, both for in-
tramolecular (Fig. 13(a)) and intermolecular (Fig. 13(b)) H–H
pairs.

The three indices can be seen to follow the same trend as
the intermolecular H–H separation decreases in the system;
they decrease between those Hs that are paired at long inter-
molecular H–H separations and increase between those which
belong to neighboring H2 molecules. The intramolecular Mul-
liken overlap population is not constrained to give a value of
1.0 for a full bond (in that sense, it cannot be considered as
a bond order index), and so begins with a different value at
large intermolecular separations, eventually joining the other
indices. On the other hand, the WBO and the MBO indices are
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FIG. 13. Wiberg bond order index (WBO), Mayer bond order index (MBO), and Mulliken overlap population (MOP) between some H–H pairs of the D3h-3H2
arrangement. The H–H pairs considered are indicated by the curly brackets: (a) intramolecular and (b) intermolecular.

very close to each other, taking on values between 1 and 0.5
for the intramolecular pairs, and between 0 and 0.5 for the in-
termolecular pairs, in agreement with our previous analysis of
the orbital correlation diagram (see Fig. 12). The three indices
also give the same picture of the evolution of intramolecular
and intermolecular H–H bonding: strengthening of the H–H
intermolecular bonds because of increased overlap between
orbitals of neighboring molecules actually induces weaken-
ing of the intramolecular H–H bonds.

Our numerical experiment is a good illustration of the
fact that there is no dichotomy between the presence and ab-
sence of a “chemical bond.” In chemical reactions as well as
in numerical experiments, at normal pressure or as the pres-
sure is increased greatly, bonds evolve, and they are made or
they break in a continuous way.

A natural next step would be to examine to what ex-
tent the arguments just developed in the case of a discrete
molecular system hold when many such discrete arrays (of
molecules) are brought close to each other, as in dense hydro-
gen under an increase of pressure. This is what we will see in
the next paper of this series,51 where we will study the evolu-
tion of the σ g and σ u* orbitals of the H2 units in the candidate
extended structures for dense hydrogen.

IV. SUMMARIZING: A PHYSICAL EFFECT
AND A CHEMICAL EFFECT

In this paper we have presented two models for the pro-
gression of the intramolecular H–H separation as neighboring
H2 molecules are induced to become closer and closer, this
being a natural consequence of an increase of pressure. Sim-
ple confinement of H2, simulated by a plausible model already
in the literature, or by squeezing two hydrogens between He
atoms, results as density increases only in a diminution of the
H2 bond length, and a corresponding rise in force constant for
the vibron.

A “chemical” effect, which could just as well be called
an orbital effect of interaction of H2 molecules, is an increase
in the population upon compression of H2 σ u* orbitals and a
depopulation of σ g orbitals. These actions elongate the bond,

as we have shown with a numerical experiment. As we will
see in the third paper in this series,51 the two effects, actually
competing with each other, are likely to be responsible for
the small “dance” that takes place in the H–H separation as
hydrogen is compressed.
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