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In the first of a series of four papers on hydrogen under pressure, and its transitions from an initi-
ating molecular state, we begin by defining carefully the problem, and setting the distance scale of
interactions of protons and electrons in molecular aggregates of the first of the elements. Following
a review of the experimental situation, in particular the phase diagram of hydrogen, in as much as it
is known, and the behavior of its vibrons and rotons, we move onto the setting up of a numerical lab-
oratory for probing the underlying physics and chemistry of interactions in hydrogen as the pressure
increases. The laboratory consists of the preferred static structures emerging from calculations on the
system in the range of 1 atm to 500 GPa, those of Pickard and Needs. The intermolecular (inter-pair)
H · · · H separations naturally decrease with increasing pressure, first rapidly so, then more slowly.
The intramolecular (intra-pair) H–H distances vary over a much smaller scale (0.05 Å) as the pres-
sure increases, first decreasing, then increasing, and finally decreasing. We define an equalization
function to gauge the approach to equality of the first neighbor and shortest next neighbor H (proton)
separations in this numerical laboratory. And we find that metallization is likely to occur before bond
equalization. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3679662]

I. INTRODUCTION

A. Physical description of the problem

Prolific in its combination with other elements in the pe-
riodic table, hydrogen is strikingly active in its chemistry. As
the most abundant element in the visible universe by far, the
physical states taken up by pure hydrogen as its mean density
is varied are also remarkable in their diversity.

In its prominent atomic form, a single electron—mass
me, charge −e, and spin 1/2—can be bound to a single
proton—mass mp (1836 me), charge +e, also with spin 1/2.
For electron and proton coordinates �re and �rp, the Hamilto-
nian for this fundamental system taken as isolated is just,

Ĥ = T̂p + T̂e − e2

|�re − �rp| , (1)

where T̂ are the standard kinetic energy operators (here,
the center of mass is in a state of uniform motion). Thus,
for example, T̂p = −(¯2/2mp) �∇2

p with ¯ being the reduced
Planck’s constant; in Eq. (1) (e2/r) = Vc(r) is the Coulomb po-
tential energy of interaction. The general quantum description
of the nature of the states of a charged particle in the presence
of a point multipole is an extensive one; here an electron is
in the presence of a point monopole, one of the key initiating
problems of quantum mechanics.

a)Present address: LADIR (UMR 7075 CNRS/UPMC), Université Pierre et
Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France.

b)Author to whom correspondence should be addressed. Electronic mail:
rh34@cornell.edu.

The ground state energy of the electron-proton pair in the
frame of the proton defines the atomic scale of energy (the
Rydberg) via the measurable lowest total energy of the
hydrogen atom,

R = 1

2
me

e4

¯2
= 13.59 eV.

It is the hydrogen problem (1) that also defines the natural
atomic scale of length, the Bohr,

a0 = ¯2

mee2
= 0.529 Å,

in terms of which R = (e2/2 a0). In the atomic ground state,
where the electron spin may take one of two projections (and
likewise the proton spin), the average electron density near
the proton is cusp-like and follows a distribution proportional
to exp (−(2r/a0)). This immediately implies that the gradient
of this density distribution at the proton is proportional to the
density itself, a property that is far more general for dense
assemblies of hydrogen. If a fixed point charge, here a proton,
is introduced into any electronic distribution ρ then it is well
known (see below) that the average gradient of the ensuing
distribution at the point charge is proportional to the charge
density there itself.1, 2

To the proton-electron system above, a second electron
can be added. The ground state (of what is now H−) is bound
and its existence was shown by Bethe3 but the system has no
excited states that are bound, as proven by Hill.4

Likewise, consider the three-charged-particle system
formed by adding a second proton to the proton-electron sys-
tem above. The Hamiltonian is now Ĥ = T̂e + T̂p,1 + T̂p,2
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+ . . . and it describes the familiar H2
+, the first molecule for

which an exact quantum-mechanical solution was obtained.
More to the point for what follows, despite the quantum-
mechanical nature of this three-particle system, it is interest-
ing to realize how more convenient it is for us to adopt a near
classical mode of thinking for the protons, with, on account
of their mass, coordinates assigned to them, and especially
in the context of the emerging term “bond” which we shall
be using throughout. The venerable and historic concept of a
chemical bond deserves a multi-volume exposition; below we
will describe briefly the various experimental and theoretical
measures associated with this construct for hydrogen.

For this problem the protons are no longer in states of uni-
form motion; the Hamiltonian for this 3-body system is just,

Ĥ = T̂e + T̂p,1 + T̂p,2 + e2

×
[

1

|�rp,1 − �rp,2| − 1

|�rp,1 − �re| − 1

|�rp,2 − �re|
]

, (2)

for which standard treatments frequently take the mass
of the proton as initially infinite. The two protons and
the electron they are sharing are then bound together at a
proton-proton separation which is very close to 2a0, through
what we can call a 1 electron–2 center covalent bond. The
corresponding ground state energy of Eq. (2) is −0.195 Ry
(−2.65 eV).

Appearing here is a first characteristic length of the hy-
drogen problem, to be discussed in detail in what follows but
in which the number of protons (and electrons) will eventu-
ally take on macroscopic values. Other emerging proton sep-
arations will also take on very different but quite density de-
pendent measures. Assigning the proper mass to the proton in
Eq. (2), leads, via a harmonic approximation, to a zero-
point energy arising from intramolecular vibrational motion
of 0.0106 Ry, or 144 meV per molecular cation, and a root
mean square displacement of 0.12 Å or 0.23 a0. It is evident
that the two protons also establish, via their relative coordi-
nates, a rotational problem with an associated rotational quan-
tum number, J (and associated displacements when eventually
hindered in an extended system).

A second, and perhaps far more familiar proton-proton
distance arises in the neutral 4-body problem constituted by
two protons (coordinates �rp,1 and �rp,2) and two electrons (co-
ordinates �re,1and �re,2). Its bound states lead to the ubiquitous
hydrogen molecule.

In order to link to the neutral extended state systems de-
veloped below, we may introduce the familiar Hamiltonian for
this system but in the following way: index the constituents by
an α, in such a way that α = 1 corresponds to protons and α

= 2 to electrons. Let their corresponding sets of positional co-
ordinates be {�rj,p}and {�ri,e}, whose domain is a macroscopic
volume V and where i and j both run from 1 to N in a neutral
system. Then the Hamiltonian is just,

Ĥ =
∑
α,i

⎧⎨
⎩T̂i,α + 1

2

∑
[α′,i ′]�=[α,i]

(−1)α+α′ e2

|�ri,α − �ri ′,α′ |

⎫⎬
⎭. (3)

Again, for the N = 2 problem described by Eq. (3) (the neutral
hydrogen molecule) the first step is to take the proton masses

as infinite. The ground state is then one with an energy of
−0.178 Ry or −2.42 eV per electron or per proton, and again
it leads to a highly specific proton-proton separation, now of
1.40 a0. For what follows this constitutes a second important
length in the hydrogen problem, characteristic of the presence
of a 2 electron–2 center bond linking together the four par-
ticles. Its systematic and relative development for extended
states of hydrogen of increasing average density is the quite
major concern in what follows.

If the protons are endowed with their proper masses, pro-
ton dynamical energies associated with intramolecular vibra-
tional motion are considerable, amounting to ∼0.010 Ry or
136 meV per proton in the ground state of this 4 particle sys-
tem. As will become apparent below, these zero point energies
will be seen to remain considerable for dense arrangements
of hydrogen especially when viewed in terms of structural en-
ergy differences per proton. And as with H2

+, the H2 problem
once again has associated orientational physics with quantum
numbers J.5

We re-emphasize the appearance of the length 1.40 a0,
as the average proton-proton separation in the N = 2 proton
(and electron) or H2 molecule problem. For it is clear that
when the system is extended to macroscopic values of N, but
in a volume V that can be experimentally altered (by, for in-
stance, application of static or dynamic pressures), then other
lengths of immediate importance to both the emerging bond-
and band-descriptions must arise. Of crucial interest will
be, for example, the average proton-proton spacings between
different but neighboring pairs or molecules. As V/N is pro-
gressively reduced, for example, by systematic increase of ex-
ternal pressure, this might well be expected to approach the
average proton-proton spacing within a molecule as has been
introduced above. It is then of considerable interest to ask just
how an approach towards “equalization” takes place in detail,
and then what role structures that minimize the enthalpies (or
even Gibbs energies in a thermodynamic context) play in this
progression.

It is also to be emphasized that Hamiltonian (3) as writ-
ten, and for N > 2, needs no modification for an extended
neutral system of protons and electrons. It will describe all
phases of hydrogen. With a doubling of the proton mass,
and an ineluctable change in quantum statistics (from Fermi-
Dirac to Bose-Einstein) it will also describe all phase of deu-
terium. Similar remarks apply to tritium where in the course
of tripling the proton mass there is a return to Fermi-Dirac
statistics.

At this point it is important to emphasize that
Hamiltonian (3) for macroscopic N describes a formally iso-
lated system; we are not engaged in what follows in any sta-
tistical discussion of possible distributions of the states of H
as might emerge should our system be connected in a thermal
sense to other large systems which could serve as heat baths.
We will primarily be concerned with the ground states of
Eq. (3) as they may evolve under the progressive changes of
V (mainly reductions) and for these the important functions
to us for macroscopic N will be the internal energy E and, for
comparisons between phases, the enthalpy E + pV, where for
constant N we will take the pressure p to be −(dE/dV), all
evaluated in the ground state. We note that experimental data
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for dense hydrogen is not taken in a ground state, but is often
not far removed from it.

The protonated molecular hydrogen H3
+, known to be

the most abundantly produced interstellar molecular ion, also
constitutes a fascinating system, with its 3 protons bound by
2 electrons. It adopts a perfect equilateral triangular struc-
ture, with an inter-proton separation of 1.6 a0, intermediate
between the characteristic H–H bond length in H2 (1.40 a0)
and H2

+ (2.0 a0). It is an interesting commentary on the role
of correlation that when an electron is added to H3

+ the re-
sulting neutral system is not stable.

With respect to the issue of possible equalization of
intra-pair and inter-pair proton-proton separations in solid hy-
drogen under pressure to be taken up below, we may note
that a very high density ground state limit of Eq. (3) indi-
cates some interesting possibilities following from the argu-
ment that the effective proton-proton interaction must even-
tually reflect screening by very wide-band electrons. These
are distributed in states with a sharp cutoff in occupation
in reciprocal space. In real space this must lead to oscilla-
tory behavior in the screened proton-proton interactions (a
manifestation of the Friedel oscillations). Since the wave-
lengths of these are non-commensurate with lattice constants
in crystalline arrangements, this leads to an expectation that
near-neighbor separations will not be commensurate either.
The consequence in terms a possible departure from equal-
ization, is, of course, subject to the effects of zero-point
excursions.

B. Presentation of the study

In this series of four interconnected papers, we will take a
fresh look at the evolution, in dense hydrogen, of the proton-
proton separations as the pressure increases, and in a partic-
ular limit, namely one where proton masses are taken as in-
finite (which will be referred to as the static approximation).
However, in order to preserve further links with the extant
literature we will constantly make reference to H–H sepa-
rations, rather than proton-proton separations (the separation
between the formal high mass nuclei of the initiating hydro-
gen, H, atoms). We will focus on the H–H separation between
protons involved in the same H2 unit—we will refer to this
separation either as the shortest H-H distance, the intramolec-
ular H–H distance, or the H–H bond length. And we will also
make good use of the shortest H–H separation between neigh-
boring H2 units, which we will call the second shortest H–H
separation or the shortest intermolecular H–H separation. The
chemistry and physics of the equalization of H–H distances
in hydrogen under pressure will therefore be taken up in four
stages.

In the first stage, we will study the evolution of the in-
tramolecular and shortest intermolecular H–H distances in
some candidate structures for crystalline hydrogen from P
= 1 atm to P = 500 GPa. Structures in this pressure range
have been recently proposed by Pickard and Needs,6 emerg-
ing from their ab initio random structure searching (AIRSS)
algorithm,7, 8 a procedure specifically designed to predict
crystalline structures. Importantly, we will propose a new in-

dex to measure the degree of equalization of the intra- and
shortest intermolecular H–H distances in these phases as the
pressure increases.

In the second stage, we will propose some explanations,
physical and orbital or chemical, for the particular behavior
found for the intramolecular H–H separation in hydrogen un-
der pressure, these based on a complementary study of dis-
crete molecular models.9

Then, in the third stage, we will return to the structures
proposed by Pickard and Needs for crystalline hydrogen, and
examine how the intramolecular H–H distances in these may
be understood from the arguments advanced in the second
paper.10

In the fourth stage, the question of equalization of the
intramolecular and shortest intermolecular H–H distances in
dense hydrogen under pressure will be studied from another
perspective—by constructing several hypothetical structures
having the special feature of allowing continuous transforma-
tion of a molecular phase into a monatomic one through the
evolution of just a single structural parameter (and it is here
we will see the golden mean appearing).11

The condensed phases of the first element would appear
to present simple problems for the physics and chemistry of
our time; they do not. Our four papers, taken together, will
provide a fresh perspective of the chemical and physical pro-
cesses at work in solid hydrogen as its density increases.

C. A word about the terminology we will use

1. The chemical bond

As we begin to think of reasons for the observed and cal-
culated H–H separations, it is appropriate to try to be more
precise here on the meaning of some words and concepts that
we are using extensively throughout this series of papers and
indeed in the literature. First, when we use the word “hydro-
gen,” we imply the element, and not whether it is diatomic
H2 or monatomic H. Second, we speak of bonds—of their
“real” presence, of their partial existence as the nuclei and
electrons of hydrogens come closer together under pressure,
inducing a reorganization of electron density. But how do we
know a bond is there? Or is not? The bond is a wonderfully
useful chemical concept, yet one that is not that easy to de-
fine. Robert S. Mulliken wisely said “I believe the chemi-
cal bond is not so simple as some people seem to think.12”
As we will see, hydrogen in dense form illustrates this
perfectly.

Into the definition of a bond there enter experimental
measures. First and foremost among these is the average in-
ternuclear separation, obtained for example from electron,
x-ray, and neutron diffraction, or from microwave spec-
troscopy. The various methods of structure determination con-
sider the molecule as a vibrating quantum object, of course.
One can also measure the energies of bonds thermodynami-
cally, and through a force-field analysis, get a measure of at
least harmonic force constants determining the normal modes
of vibration of a molecule. And then move on further to anhar-
monicities. The frequencies observed are clearly dependent
on mass, which in quantum terms obviously enters into the
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very localizability of the objects being bonded. There are also
magnetic consequences of binding (chemical shifts, coupling
constants) and spectroscopic ones, as well.

On the theoretical side we have various ingenious analy-
ses of the wave functions calculated from approximate solu-
tions of Schrödinger’s equation, or of the associated densities.
The measures devised include bond orders and other indices,
such as overlap populations; the identification of bond paths
and bond critical points in Bader’s quantum theory of atoms
in molecules;13 the analysis can also include electron localiza-
tion descriptions of several types (e.g., the electron localiza-
tion function);14 natural bond orbital analyses,15 and energy
decomposition schemes.16

For strong bonds, these various methods agree, for weak
bonds they may disagree. Such disagreements in the end
prove to be of little consequence for practical chemistry, but
nevertheless provide considerable theoretical interest. One
important point to realize is that there is no experimental di-
chotomy between the existence of a bond and the lack of a
bond. The experience at normal pressure (some 700 000 crys-
tal structures determined to date, largely by x-ray diffraction)
is that for most chosen atom pairs there is observed in one or
another bonding combination a range of distances, between
the extremes of a full bond (or a multiple bond) and, substan-
tially longer ranged, van der Waals or dispersion interaction
minima.

2. Molecule to metal, bonds to bands

In the problem before us, where hydrogen makes a transi-
tion from an initially molecular system to a metal, and where
bonds turn into bands, we have still another difficulty facing
us. The fundamentally localized, insulator nature of hydrogen
molecules separated from each other by several times their in-
ternal internuclear separation in a gas, turns, with increasing
density, into a metallic system, in which former relatively free
electrons may roam across the domain of what were formerly
discrete molecules with localized electrons. The metallic limit
is one that physicists have much experience in describing.
But we are interested precisely in the in-between land, “twixt
molecule and metal.” What language shall we use in this in-
termediate land?

We have some experience in turning bonds into bands. Or
to put it more precisely, we can trace out band formation from
localized orbitals, and see how fairly localized orbitals can be
formed from bands. In fact, in our group we have also devoted
some effort to describing the detailed relationship between ap-
plying the perturbation of atomic nuclei cores to free-electron
wave functions on one hand, and the wave functions that arise
from linear combinations of localized atomic orbitals on the
other.17, 18

So, might one nevertheless invite difficulties by taking
simple notions of bonding from discrete molecules into a
metallic realm, moreover into the extremes of density and
pressure? Only, it seems, if one is not aware of the ambigu-
ities and limitations of what goes into an understanding of
chemical bonding at ambient conditions. With a balanced and
far from dogmatic view of the chemical and physical deter-
minants of bond formation, we may feel reasonably secure in

taking the language of the H–H chemical bond from the iso-
lated diatomic to the metallic monatomic solid.

More problematic may be the use of the molecular termi-
nology. As mentioned earlier, in this series we will study the
evolution of the shortest and second shortest H–H distances
in some candidate structures for solid hydrogen. If there is no
doubt that at low pressure H2 molecules are present and that
those H–H distances can be referred to as the intramolecular
and shortest intermolecular H–H distances, how accurate can
this terminology nevertheless be as the pressure increases?
In the presence of interactions, H2 molecules are perturbing
each other. And in the same way that it is difficult to define an
atom or a molecular fragment in a molecule, it becomes diffi-
cult to define a molecule in a dense molecular solid. Nonethe-
less, as we will see in Sec. II, there is experimental evidence
for the preservation of the integrity of H2 pairs, or molecular
pairs, until remarkably high pressures. Thus, for convenience
(but fully aware of the limitations), we will use the molecular
terminology, talking about intramolecular and intermolecular
H–H distances, as long as in the structures studied, each
proton has one easily distinguishable closest neighbor, in a
fully dynamical context.

II. PHASES OF DENSE HYDROGEN

How does crystalline hydrogen progress from an in-
sulating dynamic molecular solid to a presumed metallic
monatomic one? This question has been with us since 1935,
when Wigner and Huntington19 first broached the possibil-
ity of a metallic modification of hydrogen under pressure.
They expected, and we do so today, that at a sufficiently
high pressure (high enough to induce a ninefold volume com-
pression, at least), hydrogen will metallize. But, as the pres-
sure increases continuously, will molecular hydrogen reach
a hypothetical monatomic state via a progressive evolution
of its intramolecular and shortest intermolecular H–H dis-
tances? Or will it do so abruptly, through phase transitions
accompanied by a sharp scission of dynamic and paired H2

molecules?
The metallic state of the simplest element has crystallized

the attention of chemists, physicists, planetary scientists and
the materials community. First we emphasize that we are not
addressing in this study metallization per se, as interesting
as it is. Hydrogen has definitely been metallized in ingenious
and classic shock-wave experiments,20 yet the approach to it
by steady compression at low temperatures still appears to
be out of reach experimentally, even at pressures as high as
∼350 GPa.21–24 It is important to mention here a recent ex-
periment by Eremets and Troyan in which the metallization
of hydrogen is reported at a pressure of around 260–270 GPa
and at around 295 K, but persisting down to ∼30 K.25 The
work has aroused great interest, and some controversy. It is
probably fair to say that as careful as this work is, it awaits
confirmation by other experimentalists. In density functional
theory (DFT) calculations metallization occurs at pressures
∼250 GPa or above (see Table I); but the experience with the
functionals utilized is that they underestimate bandgaps, and
so would imply metallization at a pressure lower than that
observed.
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TABLE I. Structures found to be the most stable by Pickard and Needs6

for solid hydrogen in its ground state up to 500 GPa, in the static lattice-
approximation.

Symmetry of the most Is it metallic
Pressure range stable structure (according to DFT)?

<105 GPa P63/m (Z = 8a) No
105–270b GPa C2/c (Z = 12a) No
270–385 GPa Cmca-12 (Z = 12a) Yes
385–490 GPa Cmca (Z = 4a) Yes
>490 GPa I41/amd (Z = 4a) Yes

aFor the P63/m, C2/c, Cmca-12, and Cmca structures, Z is the number of H2 molecules
in the unit cell; for the I41/amd structure, Z is the number of H atoms in the unit cell.
bWhen the zero-point energies are taken into account, the C2/c structure stability region
is shifted from <75 GPa to 240 GPa.

Let us review now the structural and spectroscopic exper-
imental situation for hydrogen under pressure.

A. Experimental data

At very high pressures, some of the most informative
experimental probes of the structure of solid hydrogen have
proven to be its spectra or optically induced excitations, re-
vealing its vibrons, phonons, rotons, and librons, linked to
the translational and orientational excitations of the protons.
Spectroscopic studies by infrared (IR) and Raman methods
have led to the partial characterization of different phases for
solid hydrogen at low temperatures.26 Crystallography, utiliz-
ing both x-ray and neutron diffraction, has also played an im-
portant role though obviously x-ray scattering from the elec-
trons of H is exceedingly weak. Summarizing to date one
finds:

� at 1 atmosphere and low temperatures, a molecular
solid composed of freely rotating H2 molecules, their
centers arranged in an hexagonal-close-packed (hcp)
structure,27 giving rise to a nearly spherical charge
time average distribution, and characterized by in-
tramolecular H–H distances of 0.74 Å (1.40 a0), a
shortest center-to-center intermolecular distances of
3.8 Å (7.2 a0), and a large direct band gap of 15.6 eV,28

� and at very high pressures and quite high temperatures
(as in the shock studies), a metallic phase, observed
experimentally, but of unknown structure, presum-
ably monatomic and possibly liquid (see Paper IV).
At low temperatures but continuing with elevated
pressures, this phase was predicted in 1968 to be a
high-temperature superconductor,29 and later perhaps
a superfluid.30

Between those two extremes, different phase transitions
have been identified. Several phase diagrams for H2, em-
phasizing different P and T regimes, can be found in the
literature.26, 31–33 The phase diagram we show here (Figure 1)
is a recent one from Hemley.33

The main points of the hydrogen phase diagram are these:

� Phase I, also known as the hexagonal-close-packed
(HCP) phase, is characterized (as noted above) by
freely rotating H2 molecules whose centers of mass

FIG. 1. Schematic phase diagram of hydrogen reproduced with permission
from Hemley.33 The phase boundaries for the solid-solid Phases I, II, and III
are from Mao and Hemley.26 For melting, selected experimental results are
taken from Datchi et al.34 (thick line), Gregoryanz et al.35 (black circles),
and Subramanian et al.36 (red circles) (for more experimental measurements,
see also Refs. 37 and 38). The upper dashed line is the extrapolation from
Ref. 35 and the lower grey line is the theoretical prediction of Bonev et al.39

The boundaries for the quantum fluid transition as well as transition from the
molecular (insulating) to the conducting fluid are uncertain. Reprinted with
permission from R. J. Hemley, High Press. Res. 30, 581 (2010). Copyright
2010, Taylor & Francis.

are arranged in an hcp structure.40 In normal H2, at
85 K, it persists from 1 atm to 110 GPa,41 a pressure
where the density has been increased by a factor of 9
with respect to its value at 1 atm and low temperatures.
In this quantum rotational solid, hydrogen remains an
insulator. The Raman vibron frequency (the stretch-
ing mode at 4161 cm−1 in a gas phase H2 molecule)
increases slightly from 1 atm to 30 GPa in Phase I,
suggesting an increasing repulsion of H2 molecules.
The vibron frequency then decreases. The latter trend
has been interpreted as a weakening of the H–H co-
valent bond.42, 43 Consistently, an analysis of the roton
bands at low temperatures (T = 6 K) revealed that the
intramolecular H–H distance decreases from 1 atm to
30 GPa and then increases.44–46 This increase has been
proposed to be a consequence of electron transfer from
the covalent bonds to the intermolecular regions.

� A second phase, Phase II, also known as the broken-
symmetry phase,44 appears at about 110 GPa (in
normal H2 at T = 85 K)41 and is characterized by
changes in the low-frequency region of the Raman and
IR spectra. These changes originate with a “quantum”
orientational ordering of the H2 molecules (ordering of
their angular momenta), but there is no longer essen-
tially free rotation. The motion is better described as
wide-angle libration.

� At 150 GPa, a large low-temperature discontinuity in
the frequency of the Raman and a strong rise in the IR
molecular vibrons mark the appearance of Phase III,47

also known as the hydrogen-A (H-A) phase.48 To date
the structure of this phase is not known definitively but

Downloaded 05 Sep 2012 to 128.253.229.242. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



074501-6 Labet et al. J. Chem. Phys. 136, 074501 (2012)

recent x-ray powder diffraction experiments suggest
that Phase III may take up a hexagonal structure.49 A
new IR vibron in this phase appears at lower frequency
than that of Phase II, indicating a further softening of
the intramolecular vibration. And its frequency con-
tinues to decrease with increasing pressure. More-
over, the intensity of the IR vibron grows notably with
pressure.50 With respect to Phase II, Phase III involves
a “classical” orientational ordering of the molecules
themselves.51 Complete rotation ceases but wide angle
libration, periodic but not harmonic, persists. Phase III
appears to be stable up to 316 GPa,52 a pressure above
which solid hydrogen has not been well-characterized
experimentally.

Because of the persistence of the vibron signature of H2

molecules at such high pressures, even as a metallic state for
solid hydrogen, the idea of a metallic molecular state, which
has been present in the community for more than 40 years, is
becoming more and more plausible.29, 52–57

In the liquid phase, the experimental metallization
of hydrogen by Nellis and co-workers20 is a classic ex-
periment. Questions still remain—Is there a first-order
liquid-liquid transition in the process? The work by Nellis
and co-workers20 suggests metallization through a contin-
uous process, while studies by Fortov et al.58 argue for
the presence of a plasma phase transition. Very recently, a
first-order liquid-liquid phase transition has been suggested
in simulation studies by Morales et al.31

B. Theoretical studies

1. Quantum mechanical statement of the problem

As outlined above (see Eq. (3)) a neutral assembly of N
protons and N electrons is confined in a macroscopic volume
V; the familiar linear measure of inverse density (V/N) is the
dimensionless Wigner-Seitz radius rs, and is defined as

4

3
πr3

s a3
0 = V

N
, (4)

where a0 is the Bohr radius, introduced, as noted above, by
the problem of atomic hydrogen.

In approximate terms, and in Bohrs, the average near-
neighbor H–H separation must be 2rs. From the measured low
temperature density of hydrogen, at one atmosphere, the value
of rs is 3.12, and this must emerge from a minimization of
the enthalpy of the Hamiltonian (Eq. (3)) introduced above. A
crucial consequence of the strict Coulomb forms of all inter-
actions is a rigorous scaling property of the ground state en-
ergy of Eq. (3). Quite independent of any eventual structure
for the proton system, the energy per electron (or per proton)
can be shown from the virial and Hellmann-Feynman theo-
rems to be a function of mers and of mprs, and in fact takes the
form

E

N
= f (mers ; mprs)

rs

,

within the standard Born-Oppenheimer approximation.59

Use of the virial theorem, in particular, leads to

〈T̂ 〉 = −(d/drs)(Ers) for the kinetic energy, and
〈V̂ 〉 = (1/rs)(d/drs)(Er2

s ) for the Coulomb interaction
energy. All three results provide exact constraints on any
numerical or simulation procedure used to determine the
ground state energy (and later the enthalpy) for the hydrogen
problem.

The treatments of Eq. (3) via modern electronic structure
methods almost invariably resort to infinitely massive protons.
Given that the vibron in the neutral hydrogen molecule has an
energy of ∼500 meV and that the rotational equivalent (say
for a J = 0 to J = 2 transition) is ∼44 meV, structural tran-
sitions for infinitely massive protons involving energy differ-
ences per proton much less than this (and as will be seen this is
almost the norm) will eventually require treatments that deal
with dynamics on a self-consistent basis, at the least.

It is clear that for a neutral system of point charges their
microscopic densities cannot be homogeneous. For fixed po-
sitions of the protons situated on a lattice, the electronic den-
sity will be periodically inhomogeneous, and within the Born-
Oppenheimer separation of time scales the electron density at
each proton is also constrained by the rigorous cusp theorem
of Kato.1, 2 If the electronic density is taken to be ρe(�r), then
the first theorem of Hohenberg and Kohn further demands that
the ground state energy of the electron system is a unique
functional of ρe(�r), and this provides the pathway to deter-
mination of a structure which for a given V/N (experimentally
fixed by choice of pressure) will yield the lowest enthalpy.
Later this has to be extended to include the energies associ-
ated with proton dynamics in what is a strongly coupled sys-
tem and also of course to a fully thermodynamic description
including entropic contributions.

What follows is to be viewed within the limitations ex-
plicitly listed above (and to be spelled out in a section that
follows)—we will follow the trend towards equalization of
H–H separations in dense hydrogen but as is revealed in static
calculations. From these static calculations, we will attempt to
glean the underlying physical and chemical principles shaping
the bonding and structure of the system and also comment on
the possible role of proton dynamics.

2. A numerical laboratory

In parallel with the experimental characterizations of the
different phases of solid hydrogen at low temperatures and
high-pressures, considerable theoretical effort has been ex-
pended in attempting to determine the associated structures. If
in the earlier days useful results have been obtained from per-
turbation theory and pair potential approximations, currently
three main approaches are now prominently used: Density
functional theory simulations for static lattices, eventually
including zero-point motion effects a posteriori,6, 57, 60–63 ab
initio molecular dynamics64, 65—the DFT-based path-integral
molecular dynamics method of Kitamura et al.65 is currently
one of the most highly developed approaches to take into ac-
count proton quantum effects—and full quantum Monte Carlo
methods, with particular mention of the pioneering work of
Ceperley and co-workers.66–68 All of these approaches, exten-
sive and thorough as they are, are subject to the limitations,
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FIG. 2. Relation between pressure P, the rs parameter [(4π /3)(rsa0)3

= V/N] and relative compression in solid hydrogen in its ground state.
Notice the rapidity, so far as rs decrease goes, with which hydrogen is initially
compressed.

which we voiced explicitly above, and will rehearse below.
Taken together, the existing calculations can be viewed as a
set of numerical experiments on dense hydrogen that carries
with it quantitative information of very significant value. Our
aim in this paper is to use a subset or selection of this consid-
erable experience to garner an understanding of the physical
and chemical factors underlying the transition of hydrogen
from an insulating molecular solid, to a conducting phase in
which proton pairing or H2 molecules (certainly highly per-
turbed from their low density state) can persist, or in which
one can see only protons themselves, even quite mobile, and
delocalized electrons.

A specific numerical subset or “laboratory” we have cho-
sen to help us formulate ideas on the molecular to monatomic
solid transition is the comprehensive study by Pickard and
Needs,6 on the phase diagram of hydrogen in its ground state,
and for pressures up to P = 500 GPa, using AIRSS.7, 8 This
paper is one of the more detailed quantum mechanical studies
of hydrogen in range P ≤ 500 GPa; it takes hydrogen from
rs = 3.12 to rs = 1.23 (see Eq. (4) for definition of rs, and
Figure 2 for the correspondence between pressure P, relative
compression and the rs parameter in that pressure regime).
Note that the AIRSS methodology and another structural pre-
diction method based on particle swarm optimization have
recently been used to examine the ground state structures of
atomic metallic hydrogen at even higher pressures (500 GPa
< P < 5 TPa corresponding to rs ∼1.23 to rs ∼0.86).69, 70

The symmetry of the structures found to be the most stable in
Ref. 6 is indicated in Table I, with the pressure range of stabil-
ity associated. As we will see, structures P63/m, C2/c, Cmca-
12 and Cmca involve H2 molecules, while the high-pressure
I41/amd structure corresponds to a monatomic phase. It is im-
portant to note that the static calculations reported here cannot
describe a rotational or librational solid.

As mentioned above, invoking the presence of molecules
in an extended structure is not unambiguous, especially under
pressure, when, within our chosen terminology, intermolecu-
lar distances become comparable to intramolecular distances.

FIG. 3. A layer of the P63/m, C2/c, Cmca-12, and Cmca structures at
P = 300 GPa (rs = 1.33—relative compression of 12.6). In the P63/m, Cmca-
12, and Cmca structures the layers are arranged in an ABA fashion; in the
C2/c structure they are arranged in an ABCDA fashion.

We will come back to this later, once we will have studied the
evolution of the H–H distances in the structures. But for now,
by stating that P63/m, C2/c, Cmca-12, and Cmca structures in-
volve H2 molecules, we simply imply that in those structures
each proton has but one closest neighbor.

a. Equation of state. Before going further, it can be help-
ful to have in mind an idea of the relative compression in-
duced by a given external pressure, generally at low temper-
atures. Figure 2 shows the relation between pressure, relative
compression and the Wigner-Seitz rs parameter in solid hy-
drogen in its ground state, and as it emerges from the equa-
tion of state proposed very recently by Caillabet et al. for the
molecular hydrogen solid.71, 72

b. Four molecular phases of hydrogen. The four molec-
ular phases of Table I (P63/m, C2/c, Cmca-12, and Cmca)
can be described as layered, a layer of each being shown
in Figure 3. Structure I41/amd is shown in Figure 4. Addi-
tional views of these five structures can be found in the sup-
plementary material (supplementary material, Figures S1–S5
(Ref. 73)).

Structure P63/m, which is the most stable arrangement in
the ground state in the pressure range corresponding to Phases
I and II, is distinguishable from the three others molecular

FIG. 4. View of the I41/amd structure at P = 500 GPa (rs = 1.23—relative
compression of 15.8).
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phases by the fact that one H2 molecule out of four has its
bond lying not in the layer plane but perpendicular to it. All in
all, four different orientations of the H2 molecules are there-
fore involved. Phase I, as we mentioned, is a fully rotational
state, so the assignment of a definite H2 orientation is to some
extent misleading. It is not possible to reproduce a rotational
solid in a static approximation. That one indeed has a rota-
tional solid in structure P63/m in the pressure range of Phase
I is supported by calculations we have carried out, showing
that the barrier to rotate any single H2 molecule in this struc-
ture is less than 1 meV/proton (at 1 atm) (recall that the zero-
point energy at 1 atm is ∼125 meV/proton). There are other
candidate structures for Phase II in the literature, such as the
P21/c,57 Pca21,64 and P21/c-24 (Ref. 74) structures. All of
them, as many others, are very close in energy (a few meV
per proton) and we strongly believe the arguments developed
in this paper as well as in the three others of the series are
little dependent on structure in the low-pressure regime; this
is why we decided to keep with the P63/m structure as the
representative for Phase II.

In the C2/c structure—proposed as a competing struc-
ture for Phase III6, 75—and in the Cmca-12 structure, which
is characterized by a similar arrangement of the H2 molecules
into triangles, the number of different directions for the H2

molecules, is reduced to three, and then further to two in the
Cmca structure. In the monatomic I41/amd structure, each hy-
drogen atom is 4-coordinated, and is involved in 6-membered
rings.

An important aspect of the enthalpics of these struc-
tures is how close to each other they are throughout this
entire and very substantial pressure range. No more than
10 meV/proton separates all four molecular structures up to
500 GPa. One can see immediately why one might therefore
think that H2 under pressure may well prefer to adopt a liquid
phase. And yet, quite distinct physical phenomena ensue, at
definite pressures—the rapid turning on of the intensity of the
IR active vibron in Phase III being one such.

c. A word about the static view of a dynamical system.
Before going further, let us take some time here to review the
meaning and implications of the structures shown in Figures 3
and 4. In their study and as noted, Pickard and Needs searched
for structures within the framework of the static approxima-
tion as defined earlier, i.e., assuming an infinite mass for the
protons. Figures 3 and 4 can be interpreted as the complete
representations of those static structures. In reality, even in the
ground state, H2 molecules as quantum oscillators, are vibrat-
ing (∼1015 vibrations per second for the H–H bond stretch-
ing) and in Phase I rotating (∼1013 rotations per second for
the H2 molecule rotation). This is irreducible zero-point mo-
tion, and the associated energy is quite large because of the
light mass of the protons (or deuterons). These realities bring
a certain but necessary caution to attributing any great realism
to the static pictures shown in Figures 3 and 4.

Though the static approximation may be a reasonable
starting point for the description of the solid state of hydro-
gen, it is obviously unphysical for the liquid state. There are
some strong indications of the possibility of a liquid state
for hydrogen even in its ground state, in a range of pres-
sures at elevated pressures.30 Thus, it seems important to en-

sure that the static approximation holds in the pressure range
considered in the study. Lindemann’s empirical law for melt-
ing provides an easy way to evaluate, at least approximately,
the pressure at which molecular hydrogen would melt—when
in classical terms the root mean vibration (RMS) amplitude√

〈u2〉 of H2 oscillators reaches about 12% of the shortest
H2–H2 separation. In fact, for quantum or ground state melt-
ing, it has been shown that the RMS amplitude should reach
30% of the separation.76 (The Lindemann parameter in he-
lium is ∼28%.) For metallic hydrogen, it is predicted to be
∼(me/mp)1/4 (∼15%) in the Bohm-Staver approximation for
sound speeds77 and its subsequent application in the De-
bye model. In the non-interacting harmonic quantum oscil-
lator approximation, the RMS amplitude of the H–H bond
stretching vibrations due to the zero-point motion is given by
formula (5),

√
〈u2〉 =

√
¯

2μω0
, (5)

with μ the reduced mass of the oscillator and ω0 the angular
frequency of the normal mode of vibration.

By using the ω0 value of the free H2 molecule stretch-
ing vibration, one gets

√
〈u2〉 ≈ 0.09 Å ≈ 0.17 a0. Thus

in solid molecular hydrogen these critical displacements are
reached when the shortest intermolecular distance is about
0.3 Å, ∼0.57 a0 which is actually smaller than the H–H bond
length of a free H2 molecule. This indicates that the transla-
tional zero-point motion may not of itself induce melting of a
molecular phase. The orientational degrees of freedom, an or-
der of magnitude softer, are far more likely to be the source of
such a transition as well as the source of purely orientational
restructuring. However, considering H2 molecules as 3D har-
monic rotors, the RMS amplitude is about 0.24 Å, i.e., 0.46
a0 and this represents 30% of an intermolecular distance. This
estimate is not expected to be very precise, but it serves to
caution us that in the molecular solid when the intramolecu-
lar H–H separation and the shortest intermolecular separation
become comparable the solid is not only compressed but may
be close to its melting point even though this may well be
preceded, as noted, by average orientational re-orderings re-
flecting combined translational and rotational displacements.

The melting of systems whose nominal Debye temper-
atures are in excess of their melting temperatures has been
discussed by Glyde.78

We again need to be explicit about the extensive func-
tions with dimensions of energy we use in the discussion of
the geometrical preferences of the various phases. The calcu-
lations as such are carried out for ground state comparisons
of the various structures and, save for the third law could be
taken as corresponding to T→ 0 K, at which point the Gibbs
energy of any system would be formally equal to its enthalpy.
It is in this sense, and under the constraint of T→0 K, that we
proceed to use in the remainder of this and the other papers in
this series the words “enthalpy” and “enthalpic” in differenti-
ating between structures.
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III. PRESENTATION OF THE STUDY
AND COMPUTATIONAL DETAILS

Let us assume for now that the Pickard and Needs static
structures are at least a reasonable starting point with which
to formulate an approximation to the evolution of hydrogen,
from P = 1 atm to P = 500 GPa (i.e., from rs = 3.12 to rs

= 1.23).79 Analyzing those five phases from a structural point
of view can then help us understand how molecular hydrogen
transforms into monatomic hydrogen, if it does so. For that
purpose, we studied for each phase the evolution of the in-
tramolecular and shortest intermolecular H–H distances, con-
sidering each structure in the pressure range within which is
the most stable.

Starting from the coordinates provided by Pickard and
Needs (in the supplementary material of Ref. 6) we opti-
mized the ground state static structures for different pres-
sures between 1 atm and 500 GPa, using the VASP plane
wave code,80–82 the Perdew-Burke-Ernzerhof (PBE) general-
ized gradient approximation density functional,83, 84 and the
projector augmented-wave method85, 86 with a pseudopoten-
tial cutoff radius of 0.8 a0 and a cutoff of 2000 eV for the
kinetic energy of the plane waves.

It is immediately clear that the cusp theorem can-
not be satisfied for such a pseudopotential. Nonetheless, in
their recent theoretical study of atomic hydrogen between P
= 500 GPa and P = 5 GPa,69 McMahon and Ceperley specif-
ically studied the validity of the pseudopotential approxima-
tion by comparing the energies and electron densities of sev-
eral structures computed with two choices of pseudopotential
cutoff radius: 0.5 a0 and 0.125 a0. They concluded that a cut-
off radius of 0.5 a0 was a reasonable approximation. Since
we are studying hydrogen at lower pressures, we assume that
our choice of a pseudopotential cutoff radius of 0.8 a0—the
smallest available in VASP—is reasonable.

In each case, the cell shape and volume of the unit cells
were allowed to change and the ions to relax, leading even-
tually to very small deviation with respect to the group sym-
metry used to label the structures. The k-point sets for the
Brillouin-zone sampling were generated via the Monkhorst-
Pack scheme87 and a different set was used for each structure
at each pressure, in order to have in each case a grid of spac-
ing of 2π × 0.02 Å−1 (∼2π × 0.01 a0

−1). Since we are more
interested by the evolution of intramolecular and intermolec-
ular H–H distances in those structures than in their relative
enthalpies, we did not consider the zero-point motion at this
stage (though it is clearly important as argued earlier). Within
this static approximation, good agreement was found with the
Pickard and Needs results for the range of pressure in which
each structure was stable.88

But we must emphasize again the limitations of the un-
derlying calculations: the quantum-mechanical effects for the
protons have not been taken into account in any of the com-
putations presented in this article. As our discussion of aver-
age atomic excursions in the ground state (Sec. II) has shown,
this does not mean that we think the quantum-mechanical
dynamic effects can be neglected. Moreover, as already
indicated, the use of a pseudopotential for the effective
electron-proton interaction can induce errors in the electronic

distribution as high-pressures are considered. Nor do we pre-
tend that the present results are highly reliable from a quan-
titative perspective. But we do believe that they are sufficient
at this stage to help us in building our chemical and phys-
ical intuition on the emerging qualitative behavior of dense
hydrogen and its structural development under pressure, and
then the emerging problem of equalization.

IV. ANALYSIS OF THE PICKARD AND NEEDS
STRUCTURES

The general manner in which condensed molecular sys-
tems respond to compression is reasonably well understood.89

In particular, as a first response, van der Waals or dispersion
interaction-space is squeezed out. Then, at greater pressures,
elements or the elements in combination try to respond to the
rising density by electronic reorganization, which in many
cases leads to higher coordination. And at higher pressures
still, covalent bonds contract. But they can also stretch. We
will discuss the latter ambiguity below.

A. When the intermolecular distances decrease

Because a H2 molecule is a three-dimensional (3D)-
object and because some of the molecular structures consid-
ered involve non-equivalent H2 molecules in the primitive unit
cell, there are quite different ways to define the shortest in-
termolecular H–H separation in the structures. We chose the
following: In each structure, in the pressure range considered,
all protons are involved in a H2 molecule, i.e., have one close
proton less than 0.8 Å away from the reference proton (blue
arrow). The first neighbor of each proton is thus the proton
to which it is “bonded” to form an H2 unit. And the second
closest neighbor(s) is (are) a proton of another H2 molecule.
It is the second closest neighbor distance we focus on, high-
lighted by the green dashed arrow on Figure 5. We com-
puted the average separations of this (these) second shortest

FIG. 5. Schematic representation of the definitions of the shortest inter-
molecular distance and intramolecular distance used in this work. The green
dashed arrow and the plain blue arrow indicate, respectively, the shortest in-
termolecular distance between the proton, in red, and any of the other protons
in black and the intramolecular distance in which the red proton is involved.
Here the protons are assumed fixed.
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FIG. 6. Evolution of the average second-shortest H–H distance (the short-
est intermolecular H–H separation) in various hydrogen phases. Where there
are several symmetry-distinct H2 molecules in a structure, the maximal and
minimal values are indicated by “spread bars.” The orange star indicates the
value of the shortest H–H distance in the monatomic I41/amd structure at 500
GPa. Note the similarity to the evolution of the Wigner-Seitz radius rs vs P
shown in Figure 2.

neighbor(s) for each proton in the unit cell and then defined
the shortest intermolecular H–H distance as the value of the
second shortest H–H separation averaged over the whole unit
cell.

From the perspective of the considerations given just
above, the average distance between two molecules is
expected to decrease when pressure increases, first dramat-
ically (as expected from Figure 2) and then more progres-
sively. In Figure 6 is plotted the evolution of the average
shortest intermolecular H–H separation in hydrogen under
pressure in the P63/m, C2/c, Cmca-12, and Cmca molecular
structures, considering each of them in the pressure range
where it constitutes the most stable structure (see Table I).
As a calibration, the shortest H–H separation in the I41/amd
monatomic structure at P = 500 GPa is also indicated (or-
ange star). The evolution of the interlayer distance with pres-
sure can be found in the supplementary material to this paper,
Figure S6.73

It must be noted that below 110 GPa this definition of
the shortest intermolecular H–H separation may to some ex-
tent be invalid, since Phases I and II are certainly composed
of freely rotating or wide-angle librating molecules, respec-
tively. But since we are most interested in the behavior of
hydrogen in Phase III, to come, where the H2 molecules are
more constrained, we adopt this definition over the entire
pressure range, from 1 atm to 490 GPa.

As the pressure increases from 1 atm, Figure 6 shows
that the shortest intermolecular H–H separation first falls very
rapidly in the P63/m structure. In this region, H2 molecules
are brought into the repulsive region of a van der Waals inter-
action; the energetic cost is (relatively) not too great. Collo-
quially one can speak (as above) of van der Waals space be-
ing squeezed out; to contract strong bonds within a molecule
is more costly.89 At around 75 GPa (rs = 1.60), the shortest

FIG. 7. Evolution of the average shortest H–H distance (the intramolecular
H–H distance) under pressure. The maximal and minimal values are also in-
dicated by a bar. The orange star indicates the shortest H–H separation in the
I41/amd monatomic structures at 500 GPa.

distance between two H2 molecules is just half its value at
1 atm. In the successive C2/c, Cmca-12, and Cmca structures,
this distance continues to decrease with pressure, reaching a
value of 1.04 Å at 490 GPa, whereas the shortest H–H dis-
tance in the monatomic I41/amd structure is 0.98 Å (1.85 a0)
at 500 GPa.

Note the general correspondence of this curve to
Figure 2, a plot of the Wigner-Seitz radius rs vs P, taken from
the equation of state for H2 of Caillabet et al.71

B. When the intramolecular distance increases

More interesting, perhaps, is the evolution of the in-
tramolecular H–H distance under pressure, because it is in
some way a more sensitive probe of the short intermolecular
interactions involved. And that intramolecular H–H distance
is an indication of the response of hydrogen to an increase of
the electronic density, an essential point in the potential met-
allization of hydrogen by band overlap. In the following, the
intramolecular H–H distance is defined simply as the shortest
separation between two protons, as sketched by the plain blue
arrow in Figure 5.

In Figure 7 is plotted the evolution under pressure of
the average intramolecular H–H distance in the P63/m, C2/c,
Cmca-12, and Cmca unit cells. Since not all H2 molecules
are equivalent, in some cases quite different intramolecular
H–H separations are involved but within the same structure.
The bars in Figure 7 just indicate in each case the minimal
and the maximal intramolecular H–H distances in the struc-
ture considered. For comparison, once again the shortest H–
H distance in the monatomic I41/amd structure at 500 GPa is
indicated by an orange star.

In contrast to the evolution of the shortest intermolec-
ular H–H separations shown in Figure 6, the evolution of
the intramolecular H–H distance as a function of pressure
is not smooth. As expected this is in part a consequence of
the structural phase transitions encountered, but also of the
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relatively small range of the intramolecular H–H separations.
Indeed, whereas in our calculations the shortest intermolecu-
lar distance between two H2 molecules decreases from 3.1 Å
(5.9 a0) down to 1.0 Å (1.9 a0) between 1 atm and 490 GPa,
the intramolecular H–H distance varies in the range of
0.736 Å (1.391 a0) to 0.780 Å (1.474 a0), less than the es-
timated root mean amplitude of the intramolecular vibration
due to the zero-point motion (∼0.09 Å or 0.17 a0) and that of
the libron displacements (∼0.24 Å or 0.46 a0).

The general trend is clear; it is that the intramolecular
H–H distance does increase with pressure, but remains
noticeably shorter than the shortest H–H distance in the
I41/amd structure at 500 GPa. Nevertheless, different regimes
can be identified before the transition to this monatomic
structure. As the pressure increases in the domain of Phase
I, in a first regime, the intramolecular H–H distance is short-
ened. With our computational methodology, it ranges from
0.751 Å (1.420 a0) at 1 atm to 0.733 Å (1.386 a0) at 100 GPa.
This can be understood as a response to the increased
repulsion between electrons of different H2 molecules, ac-
companying drastic reduction of the region where attractive
van der Waals forces were operative. As mentioned earlier,
such a shortening of the intramolecular H–H distance has
been observed experimentally by Loubeyre et al.45 and by
Grazzi et al.46 by analyzing the roton bands in para H2, and it
was also suggested by the increasing frequency of the Raman
vibron in Phase I from 1 atm to 36 GPa.42 In the second paper
of this series, we will discuss in detail the mechanism for this
interesting contraction.

It should be noted that the experimental studies45, 46 see
a “turnover” in the H–H intramolecular distance (as extracted
from the roton spectra) from contracting under pressure to ex-
panding, this occurring at ∼50 GPa in Phase I (See Figure S7
in the supplementary material to this paper73 for a graphi-
cal comparison of the experimental and calculated evolution
of the intramolecular distance with pressure). In our calcula-
tions, this transition in the P63/m structure (which we relate to
Phase I) does not take place until much higher pressures (see
Paper III in our series (Ref. 10)).

In a second regime, from 100 GPa to 400 GPa, the in-
tramolecular H–H distance increases with pressure. By anal-
ogy with its contraction (associated with a strengthening of
the H2 bond), this increase of the intramolecular H–H distance
is proposed to be a consequence of the weakening of the H2

bond. The experimental measure here is the decrease of the
vibron frequency whose origin is thought to be more “chem-
ical” than “physical.” If each hydrogen atom is to increase
coordination under pressure, the H2 bond must weaken, and
thus the intramolecular H–H distance lengthens.

We will provide a more detailed orbital analysis of this
phenomenon in the second and third papers of this series,9, 10

but let us broach an explanation here. An isolated H2 molecule
is characterized by a bonding σ g orbital and an antibonding
σ u* orbital, as shown in Figure 8.

Figure 9 shows schematically what happens at the orbital
level when two H2 molecules interact. The mixing of σ u* of
one molecule into σ g of the other results in electron transfer,
partial depopulation of σ g levels of both partners in the in-
teraction, and (generally) population of their σ u* antibonding

FIG. 8. Schematic highest occupied molecular orbital (HOMO) — σ g —
and lowest unoccupied molecular orbital (LUMO) — σ u* — of an isolated
H2 molecule. Black and white regions above simply indicate relative phases
of the wave function; no implications are being inferred of the coefficient
amplitudes.

molecular orbitals. An inevitable result of H2 compression is
therefore electron transfer out of the σ g and into the σ u*.

A quite similar phenomenon has been noted in the re-
markable organometallic complexes where an H2 molecule
is bonded side-on to a transition metal center. The “other
molecule” is then an organometallic fragment.90 These struc-
tures, in which the intramolecular H–H separation is remark-
ably elongated relative to an isolated H2 molecule, will be
discussed in detail in the second paper of this series as a use-
ful model for the physical and chemical mechanisms at work
in dense hydrogen under pressure.9 The electron transfers out
of the σ g and into the σ u* which both weaken the H–H bond,
need not be balanced in magnitude; i.e., if symmetry allows
it, a H2 unit may depart from neutrality and be negatively or
positively charged.

In a third regime, at very high pressures, say from
400 GPa to 490 GPa (the average shortest intermolecular
separation is then less than 1.1 Å or 2.08 a0), the intramolec-
ular H–H distance slightly decreases. This probably marks an
entry into the regime in which covalent bonds are compressed.

Now to summarize what we intend to render plausible
through further analysis in the next papers in the series: The
effective intramolecular H–H distance observed in dense hy-
drogen under pressure thus results from two effects that work
in opposing directions:

1 An increase of the “physical” repulsion between the H2

molecules (in a way building a wall around a molecule)
tends to shorten and strengthen the H2 bond,

FIG. 9. Schematic representation of interaction between the molecular or-
bitals of two H2 molecules. The wiggly lines represent interactions between
the orbitals specified.
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2 An increase of the “chemical” orbital interaction—
depopulation of σ g, population of σ u*—tends to lengthen
and soften the H2 bond.

Between 1 atm (rs = 3.12) and 100 GPa (rs = 1.54)—the
average shortest intermolecular H–H separation is then situ-
ated between 3.1 Å (5.9 a0) and 1.6 Å (3.1 a0)—we believe
that the intramolecular distances are governed by the repul-
sive interactions between H2 molecules. In a second regime,
between 100 GPa (rs = 1.54) and 400 GPa (rs = 1.28), a pres-
sure range in which the average shortest intermolecular sep-
aration is comprised between 1.6 Å (3.1 a0) and 1.1 Å (2.0
a0), orbital interactions are dominant. And in a third regime,
above 400 GPa, bond compression occurs again by a repulsive
mechanism. The reasons for the evolution of the intramolec-
ular H–H distance will be studied in more detail in the sec-
ond paper of this series.9 There, we will develop further the
arguments evoked here, and also support them by numerical
experiments.

C. Does hydrogen go towards equalization of its
H–H distances?

Let us return to the question of major interest in this de-
ceptively simple system, namely the occurrence of H–H dis-
tance equalization or its absence, in so far as the Pickard and
Needs calculations may reveal it. Because of the evolution
of the intermolecular H–H separation which decreases with
pressure (Figure 6), and that of the intramolecular H–H dis-
tance, which globally increases with pressure (Figure 7), the
shortest and second shortest H–H distances in solid hydrogen
evolve towards equalization with pressure. This evolution can
be measured concisely, if not uniquely, by introducing the fol-
lowing equalization function:

ξ (P ) = 1 − RH2−H2 (P ) − rH−H(P )

RH2−H2 (P1 atm) − rH−H(P1 atm)
. (6)

Here rH − H(P) and RH2−H2 (P ) are the shortest and sec-
ond shortest H–H separations at pressure P, respectively,
and rH − H(P1 atm) and RH2−H2 (P1 atm) the shortest and second
shortest H–H separations at P = 1 atm (these are 0.751 Å
(1.420 a0) and 3.105 Å (5.870 a0), respectively, with our com-
putational methodology). Note that all separations are taken
as time average values. This equalization function, ξ (P), is
thus defined in such a way that it takes on values between 0
and 1. By definition, ξ (P) is equal to 0 at 1 atm and tends to-
wards 1 when the intramolecular and shortest intermolecular
H–H separations become equal. The evolution of ξ over the
entire pressure range of the Pickard and Needs phases is now
plotted in Figure 10.

Because of the strong volume compression from 1 atm to
100 GPa (corresponding to the progressive collapse of the van
der Waals region of interactions), ξ increases dramatically in
this pressure regime. It then increases more softly with pres-
sure and seems to be reaching a plateau. At 490 GPa, it is still
notably below the value of 0.9.

The fact that the I41/amd monatomic ξ = 1 structure ap-
pears to become the most stable structure around 490 GPa,
where the equalization function for other structures is still be-

FIG. 10. Evolution of the equalization function (Eq. (6)) with pressure in
dense hydrogen. The orange star indicates that the monatomic I41/amd struc-
ture is characterized by perfect equalization of the H–H separations.

low 0.9, could suggest that dense hydrogen will eventually
reach a monatomic phase via a phase transition involving a
drastic dissociation of the H2 pairs, rather than continuously.
We will see in the second9 and third10 papers of this series
that the process could indeed be more complex.

It is remarkable that at P = 300 GPa, where we know that
H2 molecules are present from the persistence of the H–H vi-
bron band in the Raman spectrum of dense hydrogen, the de-
gree of equalization of the shortest and second shortest H–H
separations is already 85%, the shortest intermolecular H–H
separation being 1.12 Å, i.e., only 1.5 times the intramolecu-
lar H–H separation −0.76 Å.

We also know from the work of Pickard and Needs6 and
of Johnson and Ashcroft57 that the C2/c, Cmca-12, and Cmca
structures with paired hydrogens are all predicted to be metal-
lic by band overlap above around 410GPa or rs = 1.27 (taking
into account the fact that DFT methods underestimate band
gaps). Note that at this pressure, ξ ≈ 0.88. So it appears that
one can indeed attain a metallic state of hydrogen without it
being an “atomic crystal.” In other words, our analysis sup-
ports the contention that hydrogen is likely to become metal-
lic before it becomes a monatomic crystal.

V. THE BEGINNINGS OF A CONCLUSION

A definitive summary of our analysis of the physical and
chemical development of dense hydrogen and its structures
will be found in the third and fourth paper in this series. What
we have done here, in the first paper, is to look at the struc-
tures predicted by Pickard and Needs to be the most stable
static ground state arrangements for solid hydrogen at 0 K
under pressure, and to use them as a kind of laboratory for
learning more about hydrogen under pressure. Our initial fo-
cus was on the evolution of the intramolecular and shortest in-
termolecular H–H distances, to determine to what extent solid
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hydrogen undergoes an equalization of its H–H distances un-
der pressure.

Following the most stable structure of solid hydrogen be-
tween 1atm (rs = 3.12) and 500 GPa (rs = 1.23), the short-
est intermolecular H–H separation decreases with pressure
whereas the intramolecular H–H distance globally increases,
in agreement with general intuition. Nevertheless, hydro-
gen seems to resist perfect equalization of its H–H distance,
reinforcing the idea of a possible molecular metallic state of
solid hydrogen, before its dissociation.

In agreement with the experimental evidence, the evolu-
tion of the intramolecular H–H distance passes through three
several regimes. At lower pressures, it decreases slightly with
pressure, then as the pressure is increased the intramolecular
H–H distance elongates. And at still higher pressures, it de-
clines again. In the second paper of this series, we will present
in detail some molecular models to help us delineate the phys-
ical and chemical mechanisms at work in intramolecular H–H
distance changes as pressure is applied.9

One final comment: We have proposed an equalization
function that may be useful in looking at the evolution of
H–H separations obtained from static calculations as one
approaches metallization. There are certainly other ways to
study the approach to metallization—in particular molecu-
lar dynamics of the Car-Parrinello kind, path-integral Monte
Carlo and related methods. We suggest that the equalization
function will be just as useful in describing the simulated
structure of hydrogen solid or liquid in those cases. For there
will be a range of nearest and next nearest H–H separations
in these calculations, and the spreads of these will then be a
measure of fluctuations in the material, and will be a function
of temperature. Moreover, we think that this function may be
a useful tool to compare quantitatively the behavior of hy-
drogen by itself under pressure and that of hydrides, in the
context of testing the idea of “chemical pre-compression” in-
troduced a few years ago by Ashcroft.91

We welcome the reader to the remaining papers in this
series. In the second paper existing and new molecular models
are used to isolate two effects—one physical, one orbital or
chemical—on the intra- and intermolecular H–H separations
as the pressure increases.
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