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ABSTRACT: The nature of the electronic-structure of polyenes, their
delocalization features, and potential diradicaloid characters constitute a
fundamental problem in chemistry. To address this problem, we used valence
bond self-consistent field (VBSCF) calculations and modeling of polyenes,
C2nH2n+2 (n = 2−10). The theoretical treatment shows that starting with n = 5,
the polyene’s wave function is mainly a shifting 1,4-diradicaloid, a character
that increases as the chain length increases, while the contribution of the
fundamental Lewis structure with alternating double and single bonds (1)
decays quite fast and becomes minor relative to the diradicaloid pack. We show
how, nevertheless, it is this wave function that predicts that polyenes will still
exhibit alternating short/long CC bonds like the fundamental structure 1.
Furthermore, despite the decay of the VB contribution of 1, it remains the
single structure with the largest weight among all the individual structures. The
mixing of all the 1,4-diradicaloid structures into 1 follows perturbation theory rules, with the result that the delocalization energy
due to this mixing is additive and behaves as a linear function of the number of the double bonds, ΔEdel = −6.9 × n (kcal mol−1).
The VB modeling shows that while the conjugation stabilizes structure 1, this stabilization energy is energetically overridden by
the Pauli repulsion between two adjacent double bonds. Nevertheless, unsubstituted polyenes remain planar; this observation is
addressed. Potential manifestations of the diradicaloid nature of polyenes are discussed, and it is concluded that the diradicaloid
character is clearly not a well-defined physical property as in real diradicals. Thus, we went full circle to realize that our
philosophical question may not be strictly resolved. The localized/delocalized properties of polyenes seem to define a “chemical
duality principle”. This duality of molecular wave functions is a ubiquitous beguiling phenomenon.

1. INTRODUCTION

Only slightly behind benzene and cyclobutadiene, linear
polyenes C2nH2n+2 (in Scheme 1) have formed a traditional
springboard for testing theoretical concepts and thereby served
to sharpen insight into electronic structure. This fundamental
significance,1 together with their role in life-sustaining systems
such as the mechanism of vision and light harvesting systems,
and as conducting polymers, etc. have made polyenes very
popular among chemists and physicists.1a Understanding the
electronic structure of polyenes is therefore always a
fundamental issue.
There is a peculiar dichotomy in the way we think of the

electronic structure of polyenes. In some respects they behave
as though they were electronically localized species, composed
of double bonds separated by single bonds and representable by
the classical structure 1 (Scheme 1). In contrast to this localized
picture, polyenes exhibit collective electronic phenomena,
which point to a highly delocalized π-electronic structure

seemingly at odds with 1. Let us elaborate a bit the two sides of
this coin starting from the evidence for a localized presentation
and moving on to the delocalized one.
Experimental and computational1−3 data reveal that polyenes

possess alternating short double bonds (1.36−1.38 Å) and long
single bonds (1.44−1.47 Å). As such, the structural data
provide support for a description such as 1, where the double
bonds are localized and maintain rather weak interactions that
modify a bit the lengths of the double and single bonds.
Incidentally, the experimental value of the single bond C−C
distance of polyene is very close to the C−C bond length
(1.44−1.45 Å), which was determined recently by theoretical
means for the reference states of double bonds with nonbonded
2p(π) electrons.4 Other evidence comes from the rotational
behavior of polyenes which features small barriers (5.9 kcal
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mol−1) around the formal “single” C−C bonds and large ones
(35−45 kcal mol−1) corresponding to the “double” CC
bonds.
M. J. S. Dewar5 showed early on that despite the common

wisdom that polyenes are delocalized, their π-energy is additive
such that the double bond−double bond interaction “is
absorbed into the properties of the single bonds”. As such, he
argued, the single classical structure 1 provides a simple and
convenient description, which from a practical point of view has
advantages that outweigh any theoretical deficiencies. Sub-
sequently,5b he showed that the resonance effects in polyenes
are small and any stability of the polyene reflects the stronger
sp2-sp2 σ-bonds. Using various semiempirical methods, Dewar
estimated the π−π resonance effect across the single bond to be
0−2 kcal mol−1, as shown in 2 in Scheme 1, and noted5a that
inclusion of overlap in his calculations reduces greatly the bond
order of the central bond, thus implying that the π−π Pauli
repulsion may outweigh this small value of the π−resonance
energy. The very small resonance interaction estimated by
Dewar et al. was close to the experimentally estimated 2−3.4
kcal mol−1 using heats of hydrogenation by Kistiakowsky and
Conant.6

Over the ensuing five decades, this polyenic π−π resonance
value across a single bond has been re-estimated by many
workers using approaches such as isodesmic reactions and
energy decomposition analyses (EDA) of various sorts. The
values typically oscillated between the low end, 1−4 kcal
mol−1,7−9 and the somewhat higher end of 8−10 kcal
mol−1.10,11 In an EDA study of conjugation, Frenking and co-
workers12 found a 19.5 kcal mol−1 attractive π orbital
component to the total energy of interaction of butadiene.
This conjugative interaction is balanced, however, by some
fraction of the ca. 98 kcal mol−1 repulsive sum of the
electrostatic and Pauli repulsion terms,12 but it is impossible
to partition these by orbital symmetry type, as one can with the
orbital interaction contribution. The most recent value of the
conjugation energy, 12.6 kcal mol−1, was reported by Mo et
al.13 using the block-localized wave function (BLW)
approach.14 Mo also noted that the accepted experimental
resonance energy (ERE) was 8.5 kcal/mol. It is important to
note that Dewar5b used the small polyenic resonance energy
(∼2 kcal mol−1) as a reference for his thermochemical
resonance energy (TRE) scale for cyclic systems such as
benzene. Due to the work of Schaad and Hess,15 the TRE scale
became a standard in organic chemistry, but this is based now

on a higher value (∼9 kcal mol−1)16 of the polyenic resonance
energy.
As we mentioned, Dewar5a already implied that the net

interaction of two π bonds in a polyene may be repulsive.
Others came to a similar conclusion based on overlap
populations.7 Recently, Nascimento et al.17a,b used a general-
ized product wave function, made of strongly orthogonal π-
pairs to construct a “quasiclassical” state (QCS), and thereby
partitioned the total energy into the energy of the QCS and the
“interference energy” due to delocalization. In so doing, they
showed that the “delocalization/interference energy” in
butadiene17a and other conjugated polyenes17b is dominated
by π−π repulsion, while the QCS is responsible for the stability
of the polyene, its short “single” C−C bonds separating the
double bonds, as well as for the rotational barriers around these
bonds.17a As shown by Nascimento et al, the π-bonds in the
QCS like 1, are stabilized by lowering their kinetic energy,
which is the criterion for covalent bonding following the
pioneering study of Ruedenberg.17c From a different angle, Mo
et al. showed the coexistence of stabilizing conjugative
interaction and Pauli repulsion between the two conjugated π
bonds.13 The Pauli repulsion and stabilizing interaction coexist
also in benzene and other aromatic molecules.16 These features
of bond alternation and basically small conjugative interactions
portray an effective behavior embodied in the classical structure
1 in Scheme 1.
In contrast, and in all other respects, polyenes exhibit what

might be called collective or delocalized electronic phenomena
(e.g., in their electronic spectra, photoelectron spectra,
semiconductivity, isomerization via solitons etc.); all of which
indicate highly delocalized π-electronic structure seemingly
incompatible with 1 in Scheme 1. Thus, long polyenes are
photoconductors with a finite small gap,1a indicating
delocalized molecular orbitals (MOs) which make up valence
and conduction bands which approach one another due to
antibonding interactions between the local π orbitals, and
bonding interactions among the antibonding π* orbitals.18

UV−vis electronic absorption spectroscopy of substituted
polyenes has been modeled effectively by a maximally
delocalized particle-in-a-box model.19 And polyene spectra
show effects of hyperconjugation.1b,20 Perhaps the most
compelling evidence comes from photoelectron spectroscopy
(PES) that indicates that all the MOs from which the
photoelectron is being ejected are delocalized, such that one
can even trace the nodes leading to antibonding interactions in
these orbitals based on the fine structure of the PES peaks.21

Indeed, the canonical MOs, which arise from any MO
calculations are delocalized and thereby strengthen the
impression that polyenes are delocalized. As such, these
features show that polyenes exhibit a highly delocalized
electronic structure very remote from representation 1 and
unrepresentable by a simple VB structure.
Part of the difficulty here arises from a kind of chemical

“duality principle.” It has been known for some time that one
can move by a unitary transformation between localized and
delocalized molecular orbitals.22 Any observable that depends
on all the occupied orbitals (e.g., total energy, total dipole
moment, etc.) can be discussed and calculated equivalently in
the localized or delocalized basis. For observables that depend
on one or a subset of molecular orbitals (ionization potential,
spectra, for instance) one can start out with either set as well,
but if one begins with localized orbitals, one in the first
approximation is led to degeneracies that force one to take

Scheme 1. Classical Representation of Polyenes (1) with
Their Alternating Bond Length RCC Values, the Dewar
Resonance Energy Stabilization and π−π Repulsion (2), and
the Two VB Structures (3a, 3b) that Describe Butadiene in
VB Theory
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linear combinations that are precisely the delocalized or
canonical orbitals.23

Despite the evidence that supports either one of the two
representations, the localized representation 1 in Scheme 1 is
still the one used by most chemists. It appears in all textbooks,
and it serves chemists very well in thinking about structure and
reactivity of polyenes. This creates what seems to be an
undesirable situation for such a fundamental and classical
problem of electronic structure. Cannot one answer a simple
question: are polyenes localized or delocalized? The problem
may be with the question, not with providing an answer. It is
like asking whether light is a particle or a wave. We shall see this
clearly at the end of the manuscript.
It is clear from the above discussion that the dichotomy

should be addressed at the level of a properly correlated wave
function. The chemist’s representation of a polyene, 1 in
Scheme 1, is a VB structure; one of the many canonical
structures which can be written for a polyene.3 VB theory is a
multireference theory. As such, VB theory is deemed
appropriate to address this fundamental question by use of
canonical structures.
VB theory has been applied before to butadiene and higher

polyenes, using different brands of the theory as well as
projection of MO−CI wave functions to VB structures.3,24−32

Thus, using a projection technique, Berry24 has reported being
struck by the large ionic contribution to the wave function of
butadiene. He ascribed the short central C−C bond to
polarization. In another context, major interest focused on
the covalent excited states of polyenes; the hidden excited state
21Ag of butadiene33 which becomes the first excited state
starting from C8H10

3,25,33,34 and the 11Bu
− excited state.29

We shall use here the VB self-consistent field (VBSCF)
method35 which has proven to be useful and efficient for
handling polyenes and similar molecules.32 As a VB structure-
set, we use the canonical VB structures (called the Rumer
structures36), which will allow us to decide how important
structure 1 is, what other structures become important as the
polyene grows, why is the energy additive, and whether there is
a stabilizing interaction between the double bonds.
This work will endeavor to answer the questions posed above

and demonstrate something unexpected: the dominant part of
the wave function of polyenes (starting from C10H12 or C12H14)
actually involves a shifting 1,4-diradical of the type apparent
already in butadiene, 3b versus 3a in Scheme 1. In this sense,
our study will touch base with other findings of diradical and
polyradical characters in conjugated systems, using a variety of
computational and experimental techniques.37 As we will
demonstrate, the family of these diradical structures increases
as the polyene grows, while the pristine localized structure (of
the type 1) gradually diminishes. Nevertheless, it will be seen
that the energy behaves as though the polyene were a collection
of weakly interacting double bonds, 1. For completeness we
shall show the origins of the 21Ag and 11Bu

− excited states, and
their relations to the polyenic structure 1, and its diradical
siblings.

2. METHODS
Geometry optimization of C4H6−C28H22 was done using B3LYP/
D95V as implemented in Gaussian 09.38,39 We tried also BHLYP and
tested the results against MP2. Thus, B3LYP gave results compatible
with MP2, whereas BHLYP performed less well and the results are
relegated to the Tables S1-1−S1-3. All the VB calculations were
carried out at the VBSCF method35 with the XMVB, which is an ab

initio valence bond program.40 The D95V basis set was used for most
of the cases. In some cases where long bonds made convergence
difficult (using the bond distorted orbitals; see later), we used also
STO-6G.41a The delocalization energy for butadiene was tested with
other basis sets including cc-pVTZ, which gave results virtually
identical to D95V (see Table S4B).41b

3. VBSCF METHOD
The VBSCF method uses a wave function which is a linear
combination of VB structures ΦK with coefficient CK as shown
in eq 1,

∑Ψ = ΦC
K

K K
(1)

where each VB structure is a multideterminantal wave function
corresponding to a specific chemical structure, and each VB
determinant is constructed from occupied atomic orbitals [here,
the 2p(π) orbitals, the generators of the π system]. The
coefficients CK are determined by solving the secular equation
in eq 2, in the usual variational procedure.

= EHC MC (2)

Here H, M, and C are the Hamiltonian, Overlap, and
Coefficient matrices, respectively, while E is the total energy
of the system (including the σ frame). The variational
procedure involves a double optimization on the coefficients
CK, as well as the atomic orbitals of the VB structure, in a given
atomic basis set. The σ-frame is treated as a set of doubly
occupied MOs (taken from the corresponding Hartree−Fock
wave function) that are not optimized during the VBSCF
procedure. Thus, the VBSCF method is analogous to CASSCF
in the sense that both methods optimize structure coefficients
as well as the orbitals within the used atomic basis set. We use
here the double-ζ D95V and the STO-6G basis sets.39,41a

The VB structures ΦK are the Rumer structures assembled
from VB determinants. Rumer structures are the canonical
structures, which for a polyene C2nH2n+2 constitute all the
modes of pairing the 2n π-electrons into n pairs. For a general
polyene C2nH2n+2 in a singlet spin state, there exist m Rumer
structures in the structure-set given in eq 3:

= −
−

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟m n

n
n

n
2 2

1 (3)

Diagonalization of the Rumer basis set provides a spectrum
of covalent states, the lowest of which is the ground state, which
is the focus of the present paper. Other states of interest here
are the 21Ag and 11Bu

− covalent excited states.3

3.1. Types of Atomic Orbitals in VBSCF. In describing
the VB structures, one can use atomic orbitals (AOs), such that
the Rumer structures will be purely covalent. We shall refer to
this level of calculations as VBSCF(AO-C). Figure 1a shows a
typical AO for butadiene. In addition to covalent structures,
there are also many, many ionic structures, which can be added
to the Rumer set, and this of course will increase very steeply
the number of VB structures. For example, even for the small
polyene C8H10, with 8-π electrons the full covalent-ionic
structure-set contains a total of 1764 VB structures. And in a
calculation by Hirao and Nakano42 on butadiene, as in the
Berry paper cited, one can see that the contribution of all the
ionic structures is greater than that of the fundamental covalent
one. In our AO-C basis calculations, we simply omit all the
ionic structures and use only the covalent pairings.
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To avoid this multitude of ionic structures, there are ways to
account for these structures effectively, while conserving the
original number of Rumer structures. This is achieved by
allowing the AOs to have small delocalization tails on atoms
other than the one the AO “belongs” to. In this manner, ionic
structures get embedded into the formally covalent Rumer
structures (see pp. 40−42 in ref 23).23 One such set of orbitals
is called BDO,43 where BDO stands for a bond distorted orbital
in which each AO on a given atom is allowed to have a tail only
on the atom to which it is bonded. As such, there are eight
BDOs, which participate in all the possible bonding interactions
in butadiene. The pair of BDOs describing the C1−C2 terminal
π-bond of butadiene is shown in Figure 1b. One can see that
each orbital is centered on one of the C atoms of the terminal
bond but having a tail on the other atom; the tail is quite
substantial, which indicates the importance of ionic structures
in this π-bond. The same description will apply to the other
terminal bond, C3−C4.
Interestingly, the BDOs for the long bond in Figure 1c also

possess a substantial delocalization tail. However, the negative
combination in BDO(1,4) shows that the corresponding ionic
structures mixed in an antibonding fashion. This was verified by
calculating the Coulson Bond Order44 for the complete VBSCF
calculations (see Scheme S3 and Tables S9 and S10). We
further verified that the nature of this long bond BDO is
sensitive to the number of electrons enclosed by the diradical;
for 4-electrons in butadiene, BDO(1,4) is antibonding (where
1,4 indicate the numbers of the bonded carbon atoms), while
BDO(1,6) in hexatriene is bonding, and again antibonding for
BDO(1,8) in octatetraene (see Tables S9 and S10 and Scheme
S3). This 4m/4m + 2 dichotomy reflects that a cyclic
delocalization is interrupted for 4m electrons but not for 4m
+ 2 electrons. We shall refer to this method as VBSCF(BDO-

C), where the C denotes that the number of Rumer structures
is identical to the covalent set.
The second type of semilocalized AOs are those used

commonly in the GVB and SC VB methods.45,46 These orbitals
have a long tradition in chemistry and are appropriately called
“Coulson-Fisher” AOs after a seminal paper by C. A. Coulson
and I. Fischer in which they were introduced.47 These “AOs”
are here called OEOs, where the term stands for overlap-
enhanced orbitals. In OEOs, the AO has the freedom to have a
tail on all other atoms in the molecule.48 As such, butadiene has
four unique OEOs, each being centered more on one of the
atoms C1, C2, C3, or C4 while having smaller tails on all
others. For the sake of a uniform terminology, we shall refer
here to this level as VBSCF(OEO-C), where again the number
of VB structures is identical to the covalent Rumer set. Figure
1d shows the four OEOs; one centered more on C1, the
second on C2, and two OEOs on C3 and C4 related to C2 and
C1 by symmetry. One can see that now each OEO has
contribution from four carbons. Thus, in both BDOs and
OEOs, the tails are apparent. They bring into a calculation
based formally only on covalent functions the ionicity that
would occur in an AO-based VB computation. It is perhaps
noticeable that while the BDO pair is intuitively clear, the OEO
pairs are less so when the semidelocalization is quite extensive.
The VBSCF(BDO-C) and VBSCF(OEO-C) methods are

more accurate than the VBSCF(AO-C). Nevertheless, for all
the properties calculated here, the trends in VBSCF(AO-C)
were found to be virtually identical to those from VBSCF-
(BDO-C) or VBSCF(OEO-C).
In the VB calculations, one of course includes covalent

structures where the electrons are singlet paired over long
distances, such 1−4 in a polyene, or more distant pairings. We
will call these “long bonds.” These long bonds are common to
VBSCF(AO-C), VBSCF(BDO-C), and VBSCF(OEO-C). In
the latter AO types, the long bond primarily (albeit not
exclusively) exists between the atoms having the largest
contribution to the two spin coupled AOs.

3.2. Rumer Structure-Set for Polyenes. Figure 2 shows
the hierarchy of the Rumer structure-set for a generic polyene
with n π-electron pairs. The total number of the structures is
given by eq 3. These structures spread into blocks of constant
numbers of long-bonds and relative energy, which ascends as
the number of long bonds increases. The energy parameter is
given by λ, which is the energy cost of breaking a short bond
(see Section 1), as explained before.3 The first block has a
single Rumer structure, which is the fundamental classical
structure that possess n-short π-bonds (like 1 in Scheme 1),
and is labeled as R(0), here the parenthetical zero indicates that
all the bonds are intact and there are no long bonds, namely, no
diradicaloids.
Above R(0), there is a block, R(1), which is composed of a

set of Rumer structures, labeled as R(1,j), where j is an index
that indicates the number of short π-bonds that are broken in
the given structure. The “red” electrons that appear in the
valence structure are singlet paired; we will call such valence
structures diradicaloid (or long bond structures). Thus, the
index j is the number of short π-bonds separating the “radical”
centers. As such, the subset R(1,1) involves those VB structures
in which paired long bonds are separated by a single short π-
bond, thus forming what we will call a 1,4-diradicaloid, as
depicted in Figure 2 for one member of the R(1,1) set. We
depict the long bond of the diradicaloid as a curved line that
connects the singlet-paired electrons. What is being implied is

Figure 1. Atomic orbital types used in VBSCF: (a) pure AO for C4H6.
(b) The two BDOs for the terminal C1−C2 bond of C4H6 (see
structure 3a in Scheme 1). (c) The two BDOs for the long C1−C4
bond (see structure 3b in Scheme 1). Note the antibonding between
the C1 and C4 contributions. (d) OEOs for C1, C2, C3, and C4 (in
C1 and C4 the terminal tails are very small and virtually invisible here).
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nothing more or less than a singlet pairing in a covalent wave
function.
In R(1), there is also a group of R(1,2) structures in which

the radicals are separated by two short π bonds, a situation that
creates what we call a 1,6-diradicaloid. One R(1,2) structure is
depicted in Figure 2. This continues all the way to R(1,n − 1)
where the electrons in the (1,n − 1)-diradicaloid are placed at
the termini of the polyene and are separated by n − 1 π bonds.
All the R(1,j) structures are obtained from the R(0) structure
by breaking original short π bonds while pairing the electrons
across the original single C−C bonds which are the longer
bonds. As such, the structure R(1,n − 1) is of the highest
energy in the R(1) block. And in general, the number of
intervening bonds between the diradicaloid pair determines the
energy ordering in this subset. The number of Rumer structures
in block R(1) is

= ( )d
n
21 (4)

The energy ordering of the blocks is determined by the
number of short bonds broken to make diradicaloid species.
Thus, above R(1) there lies the block of R(2) structures, which
involve two diradicaloid species. The number of Rumer
structures in block R(2) is

= + ⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠d

n n
2

4 32 (5)

One of them is depicted as an example. It is labeled as
R(2;1,1) which signifies two diradicaloid pairs, each being
separated by a π bond. This continues up to the R(n − 1) block
which possess a single Rumer structure having n − 1
diradicaloid species, as shown at the top of Figure 2. For a
general case, a Rumer structure with m diradicaloids can be
labeled as R(m; l1,l2,...,lm), where li stands for the number of
carbon pairs by which the i-diradicaloid is separated. The
carbon pair may be either a short π bond or a diradicaloid.
The energy spacing between the Rumer blocks is determined

by the number of short π-bonds that are broken relative to the
fundamental structure R(0). The inset, between the R(0) and
R(1), in Figure 2 shows the elementary excitation in converting
two short π-bonds to a 1,4-diradicaloid and a π-bond across the
original single C−C bond. Each short π-bond is stabilized by
−λ.3 However, the π-bonds repel one another by the Pauli
repulsion between the identical electrons. Thus, each electron
in a π-bond or in a diradicaloid is 50% α and 50% β, and hence,
the Pauli repulsion between the π bond and the diradicaloid is
twice the term +0.5λ (consult Section 1). If we ignore the fact
that there is bond alternation and assume all λ values to be
identical then the excited structure with the 1,4-diradicaloid and
a π-bond lies above the elementary structure by 3/2(λ). Given
that the strength (λ) of a π-bond3 is of the order of 50 kcal
mol−1 (at rav = 1.4 Å), the energy gap involved in the
elementary excitation in Figure 2 is on the order of 75 kcal
mol−1.
The energy difference between Rumer structures that belong

to a single block is hard to express in a simple equation but very
simple to comprehend qualitatively based on the inset in Figure
2. One can see that in the elementary excitation, we are
converting a short π bond having a bonding interaction
strength of −λ to a longer π bond, across the original C−C
single bond, with a bonding interaction strength of −λ′ where
|λ| > |λ′|. At the same time, we create stronger Pauli repulsive
interactions 2 × (0.5λ) across the two short distances, due to
the diradicaloid flanking the new π bond. Therefore, the more π
bonds intervene between the diradicaloid in a given block, the
higher the energy of the respective Rumer structure. For this
reason, R(1,n − 1) is of the highest energy in the R(1) block,
and so on.
Using C6H8, as an example, Scheme 2 arranges the respective

five Rumer structures in blocks. As usual, R(0) is a block by
itself, while R(1) contain three Rumer structures: two R(1,1)
types and one R(1,2) type. And finally, R(2) contains a single
Rumer structure with two long bonds.

Figure 2. Spectrum of the Rumer structure-set for n-electron pairs
over 2n centers. The inset shows the energy cost (in units of λ; see
Section 1) involved in creating a diradicaloid by breaking two short π
bonds and creating one π bond across the original single C−C bond
and long bond between the diradical centers. The red-framed inset
shows the elementary excitation involved in creating a long bond from
two short ones. The elementary excitation is given as (3/2)λ, assuming
for simplicity that λ = λ′. Blocks are indicated by bold R, while
individual structures are indicated by regular font symbols [e.g., R(i,j)].

Scheme 2. Rumer Blocks and Structures for C6H8
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3.3. Interaction Rules for Mixing Rumer Structures for
Polyenes. The rules for mixing matrix elements were derived
in the previous work.3 Basically, the mixing follows rules of
perturbation theory, which is shown in Scheme 3a that
describes the mixing of Rumer structures Φj into a lower
lying Φi. Thus, following perturbation theory, this mixing
depends on the energy gap between the structures, (Ei − Ej),
and their reduced matrix element, βij (see pp 45−69 in ref
23).23 For overlapping wave functions as the Rumer structures,
the requisite matrix element is the reduced matrix element3,49

βij between Rumer structures Φi and Φj, given by

β = −H E Sij ij i ij (6)

where Hij is the corresponding Hamiltonian matrix element, Sij
the overlap, and Ei is the self-energy of the lower-lying Rumer
structure Φi. Since the energy due to the mixing is βij

2/(Ei − Ej),

while the mixing coefficient of Φj into Φi is given by Cj = βij/(Ei
− Ej), then the energy contribution due to the mixing can be
estimated from the computational output using the very simple
equation:

βΔ =E Cij j ij (7)

All the terms in eq 7 are easily available from the calculation,
so one can determine the resonance energy contributions of all
the excited Rumer structures by their mixing with the
fundamental structure, R(0).

3.3.1. Patterns and Trends of Reduced Matrix Elements in
Polyenes. The dependence of the reduced matrix elements on
the nature of the Rumer structures involved was derived in
previous work (see Section 1, a−c).3 Consider the reduced
matrix elements between the fundamental Rumer structure,
R(0), and an excited structure belonging to the block R(k). On
the basis of generalized Slater rules, it is clear that the more
electron-shifts are involved in generating R(k) from R(0), the
smaller is their reduced matrix element β0k. This is basically the
same behavior as the corresponding overlap Sk0, which falls off
with the number of bond shifts (sh)3 as follows: Sk0 = (−1/2)sh.
The decay of this overlap is fast, and it affects the
corresponding reduced matrix element. For example, Scheme
3b shows the trend by focusing on the reduced matrix elements
between R(0) and Rumer structures R(1,j) belonging to block
R(1). Thus, the larger the distance between the diradical
centers in a given R(1,j), the more electron shifts are required
to generate it from R(0) and the smaller is the corresponding
β(1,j),0. The largest matrix element will be found for R(0) with
the members of the R(1,1) subset and the smallest for the R(0)
and the R(1,n − 1) structure (see Section 1, a and c).
Similarly, as shown in Scheme 3c, the reduced matrix

elements βk,0 between R(0) and the R(k) Rumers from a block
k, decrease the higher in energy the block is. Once again this
has to do with the fact that the wave functions become different
when the more electron shifting takes place to create R(k) from
R(0).
These considerations are applied later in the discussion

section.

4. RESULTS
4.1. Geometries and VB Wave Functions of Polyenes.

Table 1 collects the B3LYP/D95V optimized bond lengths of
C2nH2n+2 polyenes for n = 2−10. The well-known picture of
bond alternation is apparent, and it seems to match reasonably
well the fundamental structure, R(0), of these polyenes. Note,
however, that the terminal “double” bonds are shorter than
internal double bonds, and the lengths of these double bonds

Scheme 3. (a) VB Mixing Diagram between Rumer
Structures Φi and Φj, Using Perturbation Theory, (b)
Schematic Representation of the Variation of the Reduced
Matrix Element between the Fundamental Rumer Structure,
R(0), and Structures Belonging to the R(1,j) Block, (c)
Schematic Representation of the Variation of the Reduced
Matrix Element between the Fundamental Rumer, R(0), and
Rumer Structures Belonging to a Single Block, R(k; k > 1),
Where k Changes from 1 and upa

aNote that in both (b) and (c), the reduced matrix element falls off
with j and k.

Table 1. C−C Bond Lengthsa (in Å) of C2nH2n+2 Polyenes
b

n r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

2 1.355 1.467
3 1.358 1.459 1.365
4 1.359 1.457 1.368 1.450
5 1.359 1.456 1.370 1.447 1.372
6 1.359 1.456 1.370 1.446 1.374 1.444
7 1.360 1.456 1.371 1.445 1.375 1.442 1.376
8 1.360 1.455 1.371 1.445 1.375 1.442 1.377 1.441
9 1.360 1.455 1.371 1.445 1.375 1.441 1.377 1.440 1.377
10 1.360 1.455 1.371 1.444 1.376 1.441 1.377 1.439 1.378 1.439

aB3LYP/D95V optimized values (unit in Å). bri means the unique bond length of Ci and Ci+1

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.7b04410
J. Am. Chem. Soc. 2017, 139, 9302−9316

9307

http://pubs.acs.org/doi/suppl/10.1021/jacs.7b04410/suppl_file/ja7b04410_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b04410/suppl_file/ja7b04410_si_001.pdf
http://dx.doi.org/10.1021/jacs.7b04410


increases slightly toward the center of the polyene. On the
other hand, the lengths of the “single” C−C bonds gets a bit
shorter as we move toward the center of the polyene. We note
that these trends occur also in some carotenoids (e.g., in
desmethyl β carotene).50

The impression given by the optimized geometries is that we
are indeed dealing with a localized system, described
approximately by the classical Rumer structure, R(0). So, let
us inspect the VB wave functions of these polyenes and see if
indeed they are dominated by the R(0) fundamental structure.
Table 2 shows weights for the Rumer structures’ blocks for
various polyenes at the VBSCF(AO-C), VBSCF(BDO-C), and
VBSCF(OEO-C) levels.
A surprise, the weight of the fundamental structure,

W(R(0)), decreases quite fast. At some polyene size, while
W(R(0)) is still the single largest weight, nevertheless, the
combined weights of the first excited Rumer block, R(1),
exceed W(R(0)). The exact polyene size where this crossover
occurs depends on the VBSCF level, but the trend is
independent of the VBSCF level. Moreover, it is seen that as
the polyene grows it develops a substantial tetra-radicaloid
behavior and even some hexa-radicaloid (due to mixing of R(2)
block Rumers), though to a much lesser extent. Indeed, a very
delocalized diradicaloid description of polyenes emerges from
VB theory.
While the trend is clear and common for the three AO types,

the reader will notice a substantial difference (up to a factor of
2) in the weights of specific diradicaloid and polyradicaloid
structures calculated by the two better levels (OEO-C and
BDO-C). These differences might reflect the fact that due to
the delocalization tails in the BDO and OEO orbitals, each spin
coupling between two semilocalized orbitals embed in addition
to the main bond coupling also minor bond couplings. But this
remains to be explained.

5. DISCUSSION
Let us see if we can reconcile the two seemingly diametrically
opposite pictures of bond localization vs a delocalized wave
function.
5.1. Why is Bond Alternation Conserved Despite the

Highly Delocalized Nature of the Polyene? We begin with
the structural aspect. It is reasonable to postulate that the actual
bond length associated with the full wave function are averages
over the bond lengths associated with component VB
structures51 weighted in the same way that they contribute to
the full wave function. eq 8 expresses this idea:

∑ ∑= ̅ + ̅R W R W Ri
Ks

Ks s
Kl

Kl l
(8)

Here, ̅Rsand ̅Rl are the average short and long bond lengths
obtained from the B3LYP optimized geometries. The first
summation runs over all Rumer structures in which the ith-
bond is a short bond ( ̅Rs), while the second over those long i-
bonds ( ̅Rl). Table S2 exemplifies the details of the predictions
for hexatriene, which has five Rumer structures.
The predictions of the equation for C8H10 and C10H12 are

shown in Figure 3 alongside the optimized geometries. It is

seen that the equation predicts reasonably well the bond
alternation, and as such, it shows that a highly delocalized wave
function gives rise to a geometry that looks as though the
double and single bonds are localized as in the fundamental
Rumer structure. The reason for this behavior is elucidated by
the data in Table 2, which shows that except for R(0), the wave
function is dominated by the R(1,j) structures of the R(1)
block and mostly by the R(1,1) structures that possess n − 1
short bonds. Since each R(1,1) structure has a small weight, and
since the structure affects only those CC lengths of the four C
atoms defining the 1,4-diradical, this mixing has little impact on
the overall bond alternation inherent in R(0). Hence, all in all,
despite the extensively delocalized wave function, the bond
alternation is conserved. But the bond localization does not
really reflect the electronic nature of the polyene.

Table 2. Weights W(R(i)) of the Various Rumer Blocks for C2nH2n+2 Polyenes at the VBSCF(AO-C), VBSCF(BDO-C), and
VBSCF(OEO-C) Levels.a

W(R(0)) W(R(1)) W(R(2)) W(R(3))

AO-C BDO-C OEO-C AO-C BDO-C OEO-C AO-C BDO-C OEO-C AO-C BDO-C OEO-C

C4H6 0.877 0.871 0.905 0.123 0.129 0.095 − − − − − −
C6H8 0.748 0.758 0.806 0.246 0.250 0.187 0.006 −0.008c 0.007 − − −
C8H10 0.629 0.588 0.712 0.343 0.356 0.265 0.028 0.06 0.023 0.000 −0.004c 0.000
C10H12 0.525 0.473b 0.627 0.409 0.453 0.325 0.065 0.09 0.047 0.001 −0.024c 0.001
C12H14 0.435b 0.550 0.446 0.369 0.112 0.077 0.007 0.004
C14H16 0.360 0.482b 0.460 0.398 0.163 0.111 0.017 0.010
C16H18 0.296 0.423 0.456 0.414 0.212 0.144 0.034 0.018
C18H20 0.261 0.415 0.248 0.075

aThese weights were determined for the B3LYP optimized geometries. Using MP2 optimized geometries basically leads to very similar weights (see
Tables S1−S5). bThe W(R(0)) values in bold are the first ones that fall below W(R(0)) = 0.5. cSmall negative values of Coulson-Chirgwin weights
occasionally occur in VB calculations for unimportant structures. These are regarded as zeros.

Figure 3. Optimized C−C bond lengths (below the structures) and
predicted ones based on eq 8 (above the structures) for C8H10 and
C14H16.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.7b04410
J. Am. Chem. Soc. 2017, 139, 9302−9316

9308

http://pubs.acs.org/doi/suppl/10.1021/jacs.7b04410/suppl_file/ja7b04410_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b04410/suppl_file/ja7b04410_si_001.pdf
http://dx.doi.org/10.1021/jacs.7b04410


5.2. Understanding the Behavior of VB Wave
Functions of Polyenes. Let us turn now to the nature of
the VB wave function and its variation with the polyene’s size.
5.2.1. Decay of the Classical Fundamental Rumer

Structure. Table 2 reveals clearly that as the polyene grows,
the weight of the classical structure R(0) decays rather fast,
such that in C10H12 or C12H14, this weight is overwhelmed by a
pack of Rumer structures, dominated by the R(1) block, and
specifically by the subset of structures R(1,1), which encompass
all 1,4-diradicaloids, separated by a single π bond. Hence, even
though W(R(0)) is the single largest weight for an individual
Rumer structure, considering the collective weight of the R(1,1)
sub-block, we conclude that the polyene is described
approximately as a delocalized diradicaloid species rather than
a classical type as R(0). This feature does not depend greatly on
the degree of bond alternation; it is a fundamental feature of
the wave function. Let us proceed now to model this decay of
W(R(0)).
Scheme 4a shows for butadiene the classical structure, its

weight W2(0) (where 2 indicates here that there are two π

bonds in R(0) of butadiene), and the corresponding 1,4-
diradicaloid’s weight WDR(1,1), at the VBSCF(AO-C) level.
Since for higher polyenes the dominant diradicaloid sub-block
is R(1,1), which involves only 1,4-diradicaloids, the weight of
the classical structure Wn(0) for higher polyene of the general
formula C2nH2n+2 will be the product of the elementary weights
of all the “butadienic fragments” that can be drawn for the
polyene. As illustrated in Scheme 4b, this number is n − 1.
Thus, we can write

= −W W(0) [ (0)]n
n

2
( 1)

(9)

Since W2(0) = 0.877, which is very close to 31/2/2, we use
W2(0) = 31/2/2 in eq 9 and calculate the weights for the various
polyenes. The so calculated Wn(0) values are plotted in Figure
4 against n, alongside with the VBSCF values for the three AO
types.
The closeness of the modeled and VBSCF sets of values is

satisfactory, considering that we neglected all other diradica-
loids contributions in deriving eq 9. This just underscores the
conclusion that the R(1,1) sub-block of Rumer structures is the
main one that mixes with the fundamental classical structure
R(0).
Note the fast decay, in Figure 4, of the weight Wn(0) as the

polyene grows. In all the sub-Figures of Figure 4, the actual
VBSCF weights decay faster than the ones predicted by eq 9.
This is because the actual calculations include the effect of all
the R(k) blocks (see Table 2), whereas eq 9 uses the R(1,1)
sub-block.

5.2.2. Hierarchy of the Rumer Structures in the R(1,j) Sub-
Block. As we argued, the major diradicaloid structures that mix
into the classical fundamental Rumer R(0) are the R(1,1)
structures, while other R(1,j), j > 1, structures mix less and less
as the number of intervening bonds between the diradical
increases. Higher Rumer blocks mix even less. So, let us focus
on R(1,j), j ≥ 1, Rumer structures, and see their behavior in the
total wave function.
Scheme 5 depicts these structures for three polyenes as

examples of the general behavior, while Figure 5 plots the
weights W(R(1,j)) as a function of j which is the number of
intervening double bonds between the diradicaloid ends. It is
seen that these weights decay very fast as j increases, and the
lowest weight is always for the R(1,n − 1) structure, the end-to-
end diradical. The weight of this structure further decreases as
the polyene grows, becoming 0.030, 0.012, and 0.005 for C6H8,
C8H10, and C10H12, respectively. As we argued in the section on

Scheme 4. (a) Weights W2(0) of the Classical Structure and
the 1,4-Diradicaloid One WDR(0) for Butadiene at the
VBSCF(AO-C) level and (b) Butadienic Units that Can
Generate 1,4-Diradicaloids for C6H8, C8H10, and C2nH2n+2
are Circled

Figure 4. Plots of predicted (eq 9) and VBSCF Computed Weights Wn(0) of the Classical Fundamental Rumer Structure, R(0), Against n, for
Polyenes, C2nH2n+2: (a) VBSCF(AO-C), (b) VBSCF(BDO-C), and (c) VBSCF(OEO-C).
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perturbation theory, as the number of intervening bonds, j,
increases, the corresponding reduced matrix element βj0 [with
regard to the mixing with R(0)] decreases, while the energy gap
(E0 − Ej) relative to R(0) increases. Consequently, the mixing
coefficient given by Cj = β0j/(E0 − Ej) decays very fast.
5.3. Delocalization Energy of Polyenes: Are the π−π

Interactions Net Stabilizing? On the basis of the above
considerations, the VBSCF wave function may be written in the
following approximate manner, dropping the normalization
constant:

Ψ ≈ Φ + Φ + ΦC CR R j R jVBSCF (0) 1,1 (1,1) 1, (1, ) (10)

Here, ΦR(0) is the VBSCF wave function for the classical Rumer
structure R(0), ΦR(1,1) is the multistructure wave function of the
various R(1,1) first-block Rumers, while ΦR(1,j) is the collective
wave function of the other Rumers in the first block with more

than one double bond intervening between the diradical ends.
The C’s are the coefficients of the corresponding multistructure
wave function, such that |C1,1| > |C1,j| as argued above and as
seen from Figure 5. This is further demonstrated in Table 3,

which shows that E[R(0) + R(1,1)] of the wave function
obtained from mixing of the R(1,1) structures into R(0), yields
VBSCF energies very close to the full VBSCF wave function.
The remaining R(1,j), j > 1, structures make a significantly
smaller contribution to the total energy.
It is clear therefore that we may express the ground state’s

wave function in the following good approximation:

∑Ψ ≈ Φ + Φ = ··· −C j n[ ]( 1, 2, , 1)R
j

j R jVBSCF (0) (1, )

(11)

To be on the safe side, we include here all the R(1)-block
structures, given by R(1,j), j = 1,2,...,n − 1, where j runs over all
the Rumer structures of block 1, while the Cj terms are
individual coefficients Cj = β0j/(E0 − Ej). If we simply use the
VBSCF coefficient, we can then calculate the delocalization
energy (ΔEdel) of the polyene obtained by mixing the R(1)
Rumer structures into R(0) based on the following
perturbation expression derived from eq 7:

∑ βΔ =E C[ ]
j

j jdel 0,
(12)

Table 4 shows the delocalization energies for the polyene
series from C4H6 to C14H16. It is seen that the perturbation
expression provides a very good approximation to the total
delocalization energies calculated by the full VBSCF wave
function. As the polyene grows, the deviation from the
computed ΔEdel increases somewhat. The deviations are rather
small, and Table 4 already makes it clear that the model based
on eq 12 is quite successful and needs no further complications
(for more information see Tables S4−S5).
To further explore the utility of the model, we show in Figure

6 (panels a and b) plots of the ΔEdel/n values versus the
number of the short π-bonds, n, in the classical polyene
structure, for the VBSCF(BDO-C) computed values. Figure 6a
shows the plots for ΔEdel‑VBSCF and eq 12 based ΔEdel‑Pert using
the D95V basis set and Figure 6b the same quantities for STO-
6G, where data for the larger polyenes is presented. In all the
plots in Figure 6, there is an excellent linear correlation (r2 >
0.997), which is expressed in eq 13:

Δ = + −E n a be/ cn
del

[ ]
(13)

Scheme 5. R(1,j) structures for C6H8, C8H10, and C10H12

Figure 5. Natural logarithms ln(W(R(1,j)) of the weights for the
R(1,j) structures in the full VBSCF(BDO-C) wave function for C6H8,
C8H10, and C10H12.

Table 3. Comparison of VBSCF(BDO-C)/D95V Energies
for the Full VBSCF Rumer Set and for Truncated Ones
Using Only R(0) and R(1,1) Rumer Structures (in a.u.)

VBSCF(AO-C) VBSCF(BDO-C)

C2nH2n+2 E[R(0)+R(1,1)] E(full) E[R(0)+R(1,1)] E(full)

C4H6 −154.8648 −154.8648 −154.9233 −154.9233
C6H8 −231.7173 −231.7173 −231.8195 −231.8200
C8H10 −308.5696 −308.5697 −308.7080 −308.7111
C10H12 −385.4217 −385.4220 −385.5957 −385.6019
C12H14 −462.2735 −462.2743 −462.4828
C14H16 −539.1251 −539.1266
C16H18 −615.9762 −615.9788
C18H20 −692.8271 −692.8310
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As n goes to infinity, the expression is simplified to a linear
function of the polyene size n:

Δ = ×E a ndel (14)

where a is a constant energy increment per one π bond. For
example, for Figure 6 (panels a and b), these expressions
become (in kcal mol−1):

Δ = − ×−E n6.331del VBSCF (15a)

Δ = − ×−E n6.869del Pert (15b)

The expressions for the STO-6G data in Figure 6b are very
similar (ΔEdel‑VBSCF = −6.106 × n and ΔEdel‑Pert = −5.679 × n)
despite the different basis sets. Furthermore, in each case, the
VBSCF calculated and perturbation expressions are close and
they show that the delocalization energy of long polyenes is a
linear function of the number of double bonds n in the
fundamental valence structure. Thus, despite the extensively
delocalized nature of the polyene, the total conjugation energy
between its double bonds is additive, or size-extensive, and
made up from 6 to 7 kcal mol−1 contributions per one double-
bond (with D95V and STO-6G). Note that for a finite polyene,
there are n − 1 conjugative interactions between double bonds,
so a single conjugative interaction will be given by a × n/(n −
1), while for an infinitely long polyene, it would be simply a,
which is 6−7 kcal mol−1.
Thus, for an infinitely long polyene, the delocalization energy

between two π bonds was just determined to be ΔEdel = −(6−
7) kcal mol−1. To assess this quantity, we may compare it to the
previously determined conjugative interaction in butadiene.
The Kollmar value11 of ΔEdel = −9.7 kcal mol−1 and the more
recent BLW value13 of ΔEdel = −12.6 kcal mol−1 are higher.
This is partly due to differences in the butadiene bond lengths
in the three studies and partly due to the different
methodologies. Therefore, to ascertain the dependence of

ΔEdel for butadiene on the VBSCF level, we used the VBSCF
with the full-space of structures (covalent and ionic), as well as
VBSCF(OEO-C), and we also varied the basis set to 6-31G*
and cc-pVTZ. The so resulting ΔEdel ranges between −5.9 and
−9.7 kcal mol−1 (see Table S4B).

5.3.1. Are the π−π Interactions in Polyenes Net
Stabilizing? We are now in a position to address this question.
Thus, for an infinitely long polyene, the delocalization energy
between two π bonds was just determined to be −(6−10) kcal
mol−1. On the other hand, we recall from Figure 2 (see the
inset there) that the destabilization of the two conjugated π-
bonds in the classical Rumer structure is 0.5λ, where λ is the
strength of a π interaction, which is distance-dependent.3 For
an average distance of the long C−C (1.45 Å), where λ = 45.0/
33.7 kcal mol−1 (depending on usage of the ground/triplet
states as reference states. See Section 1 eqs S9a and S9b), the
repulsive interaction is 22.5/17.0 kcal mol−1. The lower value is
of a similar order as the corresponding BLW value of 16.9 kcal
mol−1 determined from a model B4H2,

13 and the repulsive
interference/delocalization value of 18.4 kcal mol−1 determined
relative to the QCS reference (analogous to 1).17a

Still another method to determine the Pauli repulsion term is
by direct use of the present VBSCF calculations. Thus, in a
uniform geometry where all CC distances are identical to the
optimized central CC bond of butadiene (Table 1), the energy
gap between the two Rumer structures of butadiene (see page
S8) is 3/2(λ) (where λ = λ′; see Figure 2). This leads to values
of 0.5λ = 13.6/18.7 kcal mol−1, for VBSCF(AO-C)/VBSCF-
(BDO-C), respectively. The range of values is shown in Figure
7. Thus, even if we take the highest absolute value for the
delocalization energy and the lowest one for the repulsive
energy in Figure 7, we still reach the conclusion that the
repulsive π−π interaction, ΔErep

π−π, is larger than the
conjugative interaction, ΔEdel, in accord with previous
conclusions.7,17 This judgment reflects the fact that ΔEdel is a

Table 4. ΔEdel Values (in kcal mol−1) for C2nH2n+2 (n = 2−7) Obtained from VBSCF(BDO-C)/D95V Calculations As Well As
from the Perturbation Expression (eq 12)

molecule C4H6 C6H8 C8H10 C10H12 C12H14 C14H16

ΔEdel‑VBSCF
a −5.90 −13.30 −20.90 −28.30 −35.58 −42.48

ΔEdel‑Pert −5.95 −13.18 −20.62 −28.24 −36.41 −45.05
aThese are VBSCF values relative to the corresponding E(R(0)).

Figure 6. Plots of the delocalization energies, ΔEdel calculated with VBSCF and predicted using perturbation theory vs the poylene size n: (a)
ΔEdel‑VBSCF/n using VBSCF/D95V and corresponding ΔEdel‑Pert/n. (b) ΔEdel‑VBSCF/n using VBSCF/STO-6G and corresponding ΔEdel‑Pert/n.
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second-order effect, while the Pauli repulsion is a first-order and
hence, a larger term.
The above conclusion may seem controversial at first sight.

How can a polyene have a repulsive π−π interaction and still
remain planar? While we have not dealt here with the rotational
barrier issue, which for us is a digression, others did.17,52,53 The
rotational barrier is not a measure of the delocalization energy
but is rather a net outcome of a conglomerate of many factors.
Thus, both the planar (s-trans) ground state and the
perpendicular transition state (TS) for rotation involve a
mixture of conjugative stabilizing interactions along with Pauli-
repulsive interactions of various bonds, as well as σCC-
compression effects.52,53 In 1980, Daudey and Malrieu et al.52

showed that the various hyperconjugative interactions (σCC-π*,
σCH-π*, π−σ*CH, and π−σ*CC) in the perpendicular TS are
responsible for the fact that the central C−C bond remains
short (1.499 Å). And, furthermore, the total hyperconjugative
stabilization of the TS (−8.9 kcal mol−1) is almost as stabilizing
as the π-delocalization energy (−10.4 kcal mol−1) in the planar
s-trans structure of butadiene. This shows that the rotational
barrier reflects the somewhat greater Pauli repulsions (and
possibly others) in the TS. Using the same technique as Mo et
al.,53b we verified the conclusion of Daudey and Malrieu for
butadiene.52 Furthermore, we found that strictly π-localized
structure for the planar ground state exhibits a rotational barrier
that is virtually as large as that computed for the delocalized
species (∼7−8 kcal mol−1). Thus, the rotational barrier in
butadiene originates in augmented Pauli repulsion in the
rotational TS. This is reminiscent of the rotational barrier in
ethane, which is determined mostly by the excessive Pauli
repulsion in the eclipsed conformer, while the hyperconjugative
interactions are almost identical for the two conformers.53d

5.4. Comparison of the Ground and the First Excited
Covalent States of Polyenes. As we mentioned in the
introduction, there are two important covalent excited states of
polyenes. The lowest energy of these is 21Ag having the same
symmetry as the ground state 11Ag. The second excited state is
11Bu

−. To illustrate the origins of these states, consider the five
Rumer structures in Figure 8a for C6H8. These are the
fundamental structure R(0), three R(1) structures, and a single
R(2) structure.
Figure 8b classifies the symmetry of these Rumer structures.

It is seen that R(0), R(1,2), and R(2) all belong to the Ag
irreducible representation, while R(1,1) and R(1,1)′ are not
symmetry adapted. As shown in the right-hand side of Figure
8b, taking positive and negative linear combinations creates
R(1,1)+, which transforms as Ag, and R(1,1)− which transforms
as Bu

−. However, in VB these combinations involve also a matrix
element between the two structures that cause the energies of
the combinations to split, as shown in Figure 8b.
The symmetry classification simplifies the constitutions of

the states. Figure 8c shows the mixing diagram that generates

the ground and two excited states. It is apparent that the 11Bu
−

state is identical to the Bu
− combination of R(1,1) and R(1,1)′.

On the other hand, the 1Ag states will arise from a more
complex mixing of all the Rumer structures and combinations
that transform as Ag. As should be clear by now, the ground
state 11Ag is generated by the fundamental Rumer structure
R(0) mixed in bonding fashion with the R(1,1)+ combination
and less so [due to the reduced matrix element effect; see
above] R(1,2) and even smaller contribution from R(2). On the
other hand, 21Ag is dominated by end-to-end diradicaloid
R(1,2) mixed in an antibonding fashion with R(1,1)+ and a
bonding combination of R(2) (see Table S7, equations S12−
S13). These are general features of these states, which will not
be altered as the polyene gets longer, just becoming more
complex because of the many Rumer structures (Equations
S12−S14). More details can be found in Tables S6 and S7 and
Scheme S6.

5.5. Manifestations of the Diradical or Diradicaloid
Nature of Polyenes. Does the significant collective-diradical
character of polyenes, emerging so clearly in our VB study,
manifest itself in physical and chemical properties? There is
intense interest in the diradical character of formally closed
shell organic molecules. One reason is of course intellectua-
l,37a,b,54 while another is practical.37c−f,h−j,55−59 Thus, as shown
in Scheme 6, oligomers of polyacenes (4), quinodimethanes
(5), and various derivatives of these molecules, as well as 1,3-
dipoles (6 and 7), are consistently described as diradicaloids,
diradicals, and sometimes as polyradicals.37a Synthetic deriva-
tives of 4 and 5 exhibit large nonlinear optical properties,
unusual magnetic and optical properties, and they serve as
organic field effect transistors.37d−f,h−j Diradical character is an
essential feature of candidates for the fascinating phenomenon

Figure 7. Delocalization energy (stabilizing interaction) and the Pauli
repulsive π−π interaction between two π bonds in a long polyene (in
kcal mol−1). The repulsive interactions out of brackets are estimated
based on the semiempirical VBSCF study (ref 3), while those in square
brackets are estimated directly from the present VBSCF calculations
where, here, the values refer to (AO-C)/(BDO-C), respectively.

Figure 8. Generation of the covalent states, 11Ag, 2
1Ag, and 11Bu

− for
C6H8. (a) The corresponding Rumer structures. (b) Symmetry
classification of the structures and of the R(1,1)+/− combinations.
(c) Structure mixing diagram leading to the corresponding states. The
values of the coefficients are taken from the VBSCF(BDO-C)/D95V
calculations.
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of singlet fission.55 Other consequences of the 1,3-dipolar
reagents are their reactivity patterns.54 Recently, Braida and
Hiberty57 showed that the barriers for cycloaddition of a variety
of 1,3-dipoles to ethylene correlate with the inverse of the
diradical character of the 1,3-dipoles. The dimerization of the
parent quinodimethane to [2,2]paracyclophane may also be
ascribed to its diradical character, as well as to the aromatization
of two rings. Transmission of current across single molecules
reflects highly mobile electrons and may be associated with
increased diradical character in a conducting molecule or
oligomer/polymer.58

What about reactivity? The relationship of diradical reactivity
to that of radicals needs to be delineated carefully and with
proper cognizance of spin and spatial symmetry. This will be
done in more detail in a future contribution by some of us; here
we just mention the problems that arise.
The reactivity of simple radicals (H, CH3) is extraordinary:

they dimerize in a shot, unless there be steric impediments;
they add to olefins and abstract hydrogen and chlorine atoms
with low activation barriers. True diradicals are more complex.
What do we mean by true diradicals? We have in mind
trimethylenemethane or 1,3-meta-quinodimethane. The dir-
adical nature of these molecules arises from their electronic
structure: two electrons in two degenerate or nearly degenerate
orbitals. Of the six resulting microstates, a triplet and three
singlets, two compete for being the ground state of the
molecule, the open-shell triplet and, generally, an open-shell or
closed shell singlet. The reactivity of these two states is very
different; this is what a further study will take apart.
Diradicaloids are near diradicals: they have a ground state

singlet (often with strong configurational mixing) and a
relatively low-lying triplet. Various measures of diradicaloid
character have been proposed.60 The polyenes fall into the class
of diradicaloids, especially as they become longer. The
antibonding nature revealed in Figure 1d for the OEOs of
1,4-diradicaloids makes them particularly interesting despite the
fact that the entire pack of diradicaloid-Rumer structures
delocalizes the 1,4-diradicals over the polyenes. Thus, the
polyene’s diradical character may be responsible for their
enhanced reactivity relative to isolated double bonds. Polyenes
are known also to be photoconductors with small energy gaps,
and this property may also reflect the high diradical character.

One should be cautious to attribute too many physical
manifestations to the diradical character of polyenes. First, the
fundamental R(0) structure maintains the largest individual
weight, while the diradicaloid structures undergo delocalization,
and their mutual mixing imparts stability to the pack. Second,
along with the change of the diradical character other
properties of the molecule change too. For example, a high
diradical character necessarily means that there is a very low-
lying triplet state.60c,h Indeed, our B3LYP/D95V calculations
show that for C20H22 and C28H30, the singlet−triplet excitations
are 15.5 kcal mol−1 and 11.1 kcal mol−1, respectively (for the
way the singlet−triplet excitation evolves as polyenes grow
longer, see Table S8). As such, in the case of reactivity, for
instance cycloaddition reactions with polyenes, the reaction
barriers are proportional to the singlet-to-triplet excitation
energy of the reacting molecules. A low value will result in a low
barrier, indeed (see ref 23, pp. 116−192).61−63 These very low
singlet−triplet excitation values will make the long polyenes
very susceptible to cross-linking. Similarly, the tendency of
polyenes (starting with butadiene) to exhibit 1,4-reactivity
(which Thiele ascribed in 1899 to residual affinities in these
sites) might be attributed to the 1,4-diradicaloid characters of
the molecules. But using VB modeling of the barrier (see ref 23,
Ch. 6),23,61−63 the 1,4 reactivity actually derives from the triplet
state of the molecule, which is purely a 1,4-triplet diradical. As
we already stated, these properties, a low-lying triplet state, high
diradical character, are not separate properties. As most clearly
shown by Nakano, they are intimately connected with each
other.60c

Considering all the above, it is not clear if the diradicaloid
character of polyenes is a physical observable property as in real
diradicals. Thus, on the one hand, the VB wave function shows
vividly how the diradical character increases exponentially with
the growth of the polyene and that this affects the polyene
properties and its reactivity. On the other hand, the diradicaloid
structures are highly delocalized and may be considered as the
way VB theory delocalizes the double bonds, which are
localized in the fundamental structure.

■ CONCLUSIONS
We asked at the outset the following question. Are polyenes
localized or delocalized? To respond to this question, we used
VBSCF calculations and modeling of polyenes, C2nH2n+2. The
theoretical treatment shows that the polyenes may be described
primarily by a shifting 1,4-diradicaloid character, which
increases as the chain length increases. Around n = 5, the
wave function of the polyene starts to be dominated by a
collection of 1,4-diradicaloid structures, while the fundamental
pristine structure with alternating double and single bonds (1)
decays quite fast (Figure 4) and becomes minor relative to the
diradicaloid pack. Nevertheless, it is this wave function that
predicts in a simple fashion that the polyene will exhibit
alternating short/long CC bonds like the fundamental structure
1. Furthermore, despite the decay of 1, it remains the single
structure with the largest weight among all the individual
structures. The mixing of all the 1,4-diradicaloid structures into
1 follows perturbation theory rules, with the result that the
delocalization energy due to this mixing is additive and behaves
as a linear function of the number of the double bonds (eq
15b), n, namely, ΔEdel = −6.9 × n (kcal mol−1), where for
infinitely long polyenes the 6.9 kcal mol−1 is the conjugation
energy between double bonds (see Table S4B for the value
with OEO). Furthermore, in accord with previous conclu-

Scheme 6. Molecules with Diradical Characters, 4−7
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sions,5,13,17 the VB modeling shows that while π conjugation
stabilizes structure 1, nonetheless, this relatively weak
delocalization energy is insufficient to overcome the first-
order Pauli repulsive terms between two adjacent π bonds.
Even so, polyenes can be and are planar.17 Thus, for butadiene
the nonplanar rotational-transition-state (RTS) has a virtually
identical delocalization energy52,53 as the planar ground state,
and the rotational barrier reflects larger repulsive interactions in
the perpendicular RTS.
Several potential manifestations of this diradicaloid character

are discussed, for example, decreasing singlet−triplet energy
gaps (e.g., 11.1 kcal mol−1 for C28H30 in Table S8) and
consequently increasing reactivity,61−63 increasing photocon-
ductivity, etc., as the polyene gets longer. Nevertheless, it is
concluded that this diradicaloid character is clearly not as well-
defined a physical property as in real diradicals.
Thus, we went full circle to realize that our philosophical

question may not be strictly resolved. The localized/delocalized
properties of polyenes seem to define a “chemical comple-
mentarity/duality principle”. Once we localize the bonds as in
1, a duality principle steps in and causes indefinite location of
the bonds. A similar finding64 was reported for hexagonal X6

species (X = H, Li, and CH), wherein the respective MO-based
wave functions of the Kekule ́ structures or the delocalized states
were expanded to their covalent and ionic structures. For these
hexagons, it was observed that while each local X−X bond was
primarily covalent (WCOV ≈ 0.75), the covalent structure of the
whole X6 species decayed as an exponential function of WCOV.
This decay was much faster in the delocalized hexagonal
species, where the VB projected wave function was dominated
by ionic structures (monoionics and higher), even though the
local bonds remained covalent. This duality of the molecular
wave function is a ubiquitous and will remain a beguiling
phenomenon.
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(12) Cappel, D.; Tüllmann, S.; Krapp, A.; Frenking, G. Angew. Chem.
Int. Ed. 2005, 44, 3617−3620.
(13) Mo, Y.; Zhang, H.; Su, P.; Jarowski, P. D.; Wu, W. Chem. Science
2016, 7, 5872−5878.
(14) (a) Mo, Y.; Peyerimhoff, S. D. J. Chem. Phys. 1998, 109, 1687−
1697. (b) Mo, Y.; Song, L.; Lin, Y. J. Phys. Chem. A 2007, 111, 8291−
8301.
(15) Schaad, L. J.; Hess, B. A. Chem. Rev. 2001, 101, 1465−1476.
(16) Shaik, S.; Shurki, A.; Danovich, D.; Hiberty, P. C. Chem. Rev.
2001, 101, 1501−1539.
(17) (a) Fantuzzi, F.; Cardozo, T. M.; Nascimento, M. A. C. Phys.
Chem. Chem. Phys. 2012, 14, 5479−5488. (b) Cardozo, T. M.; Freitas,
G. N.; Nascimento, M. A. C. J. Phys. Chem. A 2010, 114, 8798−8805.
(c) Ruedenberg, K. Rev. Mod. Phys. 1962, 34, 326.
(18) (a) Hoffmann, R. Solids and Extended Surfaces: A Chemist’s View
of Bonding in Extended Structures; VCH Publishers: New York, NY,
1988. (b) Albright, T. A.; Burdett, J. K.; Whangbo, M. H. Orbital
Interactions in Chemistry; Wiley-Interscience Publication: New York,
NY, 1985.
(19) (a) Kuhn, H. J. Chem. Phys. 1949, 17, 1198−1212. (b) Bayliss,
N. S. J. Chem. Phys. 1948, 16, 287−292.
(20) (a) Mulliken 1942 on hyperconjugation: Mulliken, R. S. Rev.
Mod. Phys. 1942, 14, 265−274. (b) Woodward, R. B. J. Am. Chem. Soc.
1941, 63, 1123−1126. (c) Fieser, L. F.; Fieser, M.; Rajagopalan, S. J.
Org. Chem. 1948, 13, 800−806.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.7b04410
J. Am. Chem. Soc. 2017, 139, 9302−9316

9314

http://pubs.acs.org/doi/suppl/10.1021/jacs.7b04410/suppl_file/ja7b04410_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/jacs.7b04410
http://pubs.acs.org/doi/suppl/10.1021/jacs.7b04410/suppl_file/ja7b04410_si_001.pdf
mailto:sason.shaik@gmail.com
mailto:weiwu@xmu.edu.cn
mailto:rh34@cornell.edu
http://orcid.org/0000-0001-5369-6046
http://orcid.org/0000-0003-4224-4532
http://orcid.org/0000-0001-7643-9421
http://dx.doi.org/10.1021/jacs.7b04410


(21) On photoelectron spectroscopy, see: Heilbronner, E.; Bock, H.
The HMO-Model and Its Applications, Basis and Manipulation; J. Wiley
& Sons: London, 1976.
(22) (a) Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35,
457−465. (b) Foster, J. M.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 300−
302. (c) Pipek, J.; Mezey, P. G. J. Chem. Phys. 1989, 90, 4916−4926
Note that these localized orbitals are orthogonal and possess therefore
orthogonality tails..
(23) Shaik, S.; Hiberty, P. C. A Chemist’s Guide to Valence Bond
Theory; John Wiley & Sons Inc.: New York, 2008; pp 104−109.
(24) (a) Berry, R. S. J. Chem. Phys. 1957, 26, 1660−1664. (b) Berry,
R. S. J. Chem. Phys. 1959, 30, 936−941.
(25) Fuβ, W.; Haas, Y.; Zilberg, S. Chem. Phys. 2000, 259, 273−295.
(26) Schulten, K.; Karplus, M. Chem. Phys. Lett. 1972, 14, 305−309.
(27) Simonetta, M.; Gianinetti, E.; Vandoni, I. J. Chem. Phys. 1968,
48, 1579−1594.
(28) Said, M.; Maynau, D.; Malrieu, J. P.; Garcia Bach, M. A. J. Am.
Chem. Soc. 1984, 106, 571−579. (b) Said, M.; Maynau, D.; Malrieu, J.
P. J. Am. Chem. Soc. 1984, 106, 580−587. (c) Guihery, N.; Ben Amor,
N.; Maynau, D.; Malrieu, J. P. J. Chem. Phys. 1996, 104, 3701−3708.
(29) Li, X.; Paldus. Int. J. Quantum Chem. 1999, 74, 177−192.
(30) (a) Klein, D. J.; García Bach, M. A. Phys. Rev. B: Condens. Matter
Mater. Phys. 1979, 19, 877−886. (b) Klein, D. J.; Schmalz, T. G.; Seitz,
W. A.; Hite, G. E. Int. J. Quantum Chem. 1985, 28, 707−718.
(31) (a) Nakayama, K.; Nakano, H.; Hirao, K. Int. J. Quantum Chem.
1998, 66, 157−175. (b) Kawashima, Y.; Nakayama, K.; Nakano, H.;
Hirao, K. Chem. Phys. Lett. 1997, 267, 82−90.
(32) Luo, Y.; Song, L.; Wu, W.; Danovich, D.; Shaik, S.
ChemPhysChem 2004, 5, 515−528.
(33) (a) Hudson, B. S.; Kohler, B. E. Chem. Phys. Lett. 1972, 14,
299−304. (b) Hudson, B. S.; Kohler, B. E. J. Chem. Phys. 1973, 59,
4984−5002.
(34) Dunning, T. H., Jr.; Hosteny, R. P.; Shavitt, I. J. Am. Chem. Soc.
1973, 95, 5067−5068.
(35) (a) van Lenthe, J. H.; Balint-Kurti, G. G. Chem. Phys. Lett. 1980,
76, 138−142. (b) van Lenthe, J. H.; Balint-Kurti, G. G. J. Chem. Phys.
1983, 78, 5699−5713. (c) Verbeek, J.; van Lenthe, J. H. J. Mol. Struct.:
THEOCHEM 1991, 229, 115−137.
(36) Rumer, G. Nachr. Ges. Wiss. Goettingen, Geschaeftliche Mitt. 1932,
377.
(37) (a) Hachmann, J.; Dorando, J. J.; Avileś, M.; Chan, G.K-L. J.
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