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We show in this work that conjugated π-electron molecular chains can, in quite specific and under-
stood circumstances, become more conductive the longer they get, in contradiction to what would be
expected intuitively. The analysis, done in the framework of the source and sink potential method,
and supported by detailed transmission calculations, begins by defining “relative transmission,” an
inherent measure of molecular conduction. This, in turn, for conjugated hydrocarbons, is related to a
simple molecular orbital expression—the ratio of secular determinants of a molecule and one where
the electrode contacts are deleted—and a valence bond idea, since these secular determinants can
alternatively be expressed in terms of Kekulé structures. A plausible argument is given for relat-
ing the relative transmission to the weight of the diradical resonance structures in the resonance
hybrid for a molecule. Chemical intuition can then be used to tune the conductivity of molecules by
“pushing” them towards more or less diradical character. The relationship between relative transmis-
sion (which can rise indefinitely) and molecular transmission is carefully analyzed—there is a sweet
spot here for engineering molecular devices. These new insights enable the rationalization of a wide
variety of experimental and theoretical results for π-conjugated alternant hydrocarbons, especially
the striking difference between extended oligophenylenes and related quinoid chains. In this context,
oligo-p-phenylene macrocycles emerge as a potential molecular switch. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972992]

I. INTRODUCTION

Much effort in the field of theoretical molecular elec-
tronics has been directed towards gaining insight into the
remarkable phenomenon of quantum interference (QI).1–4

General strategies to increase the conductivity of molecules
through structural modification have attracted less attention.5–8

In this work, we will explore just such strategies for a
class of conjugated π-electron systems, even alternant hydro-
carbons.

An alternant hydrocarbon is a planar π-electron system
in which all the carbon atoms that take part in the conju-
gated system can be divided into two classes (e.g., labeled
by zeros and stars, as shown in Fig. 1 for benzene) so that
members of the two classes alternate and atoms of the same
class are never next to one another.9 The alternant classi-
fication is one of the oldest in the theory of conjugated
hydrocarbons; its consequences are mathematically and phys-
ically strong and, as we will show, retain their vitality in our
time.

a)Author to whom correspondence should be addressed. Electronic mail:
Thijs.Stuyver@vub.ac.be

II. THEORY

We start from the Source and Sink Potential (SSP) method
to obtain an expression for the transmission probability in
a molecular electronic device (MED).10–12 The transmission
probability through a molecule can be defined as the prob-
ability for an electron, which has entered the system, to
travel through the molecule without being scattered. It can
be related to the conductance with the help of the Landauer
formula,13

G (E) =
2e2

h
T (E) , (1)

where G(E) and T (E) are, respectively, the conductance of
the molecule and the transmission probability of an electron
traveling through the molecule at the energy level of E.

Although many researchers have been using the Non-
Equilibrium Green’s Function (NEGF) methodology13 to cal-
culate transmission probabilities, in our theoretical develop-
ment here we adopt the alternative Source and Sink Potential
(SSP) method. The equivalency of the two methodologies has
been explicitly demonstrated by Fowler et al.14 The expression
for the transmission probability through a π-electron system
connected to contacts at atoms r and s can be written as
follows:11,12
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Tr,s (E) =
4 β̃2 sin2 q(∆r,r (E)∆s,s (E) − ∆ (E)∆rs,rs (E))

���e
−2iq∆(E) − e−iq β̃∆s,s(E) − e−iq β̃∆r,r(E) + β̃2∆rs,rs(E)���

2
. (2)

In this expression, ∆ stands for the characteristic polynomial
of the Hückel/tight-binding Hamiltonian matrix of the origi-
nal molecule incorporated into the molecular electronic device
(H) in units of β (resonance integral between adjacent carbon
atoms) with α (the on-site Coulomb integral) set to zero. The
letters before and after the comma in the subscripts denote,
respectively, the rows and columns omitted from the secular
determinant that gives rise to this polynomial, so that

∆ (E) = det (E1 −H) , (3)

∆s,s (E) = det(E1 −H)s,s, (4)

∆r,r (E) = det(E1 −H)r,r , (5)

∆rs,rs (E) = det(E1 −H)rs,rs, (6)

where 1 is the unit matrix. Furthermore, q denotes the wave
vector of the Bloch wave passing through the system, and β̃ is
defined as follows:

β̃ =
β2

MC

βC
, (7)

with βMC being the resonance integral between the atom in
the molecule at the point of attachment to the contact and the
first atom of the contact, and βC being the resonance inte-
gral between atoms in the molecule. A recapitulation of the
derivation of this expression (Eq. (2)) can be found in the
supplementary material.

Around the Fermi level (E = 0), Eq. (2) can be simplified
to11,12

Tr,s (0)

= lim
E→0

4 β̃2 (
∆r,r (E)∆s,s (E) − ∆ (E)∆rs,rs (E)

)
���−∆ (E) − i β̃∆s,s (E) − i β̃∆r,r (E) + β̃2∆rs,rs (E)���

2
.

(8)

As already mentioned above, we will focus in this work on
even alternant hydrocarbons, where the number of starred
and unstarred atoms is even. Coulson and Longuet-Higgins
demonstrated that for this class of hydrocarbons, ∆r,r and ∆s,s

FIG. 1. The carbon atoms of benzene divided in two classes (0 and *).

are odd functions of the energy.15 Odd functions are by defini-
tion equal to zero at the origin, so ∆r,r (0) = 0 and ∆s,s (0) = 0,
thus

Tr,s (0) = lim
E→0

−4 β̃2∆ (E)∆rs,rs (E)
���−∆(E) + β̃2∆rs,rs(E)���

2
. (9)

Since the denominator is now completely real, the absolute
value signs can be taken care of simply as follows:

Tr,s (0) = lim
E→0

−4 β̃2∆ (E)∆rs,rs (E)

∆2 (E) − 2 β̃2∆(E)∆rs,rs(E) + β̃4∆2
rs,rs(E)

.

(10)

In the weak interaction limit ( β̃ → 0), this expression can be
further simplified to16

Tr,s (0) = lim
E→0
−4 β̃2

(
∆rs,rs(E)
∆(E)

)
. (11)

III. RELATIVE TRANSMISSION

We now introduce a quantity, which we call “relative
transmission,” which is defined as follows:

T rel
r,s (0) = lim

E→0
−
∆rs,rs (E)

∆ (E)
. (12)

Note that T rel
r,s (0) is positive because ∆rs,rs (0) and ∆(0) have

the opposite sign (or are equal to zero).17 The first reason for
introducing this definition is convenience, as will become clear
below. The second reason for doing this is that this quantity is
the closest one can get to an inherent measure of the molecular
conductance, independent of the type and strength of the con-
nection to the contacts. The characteristic polynomials depend
only on the electronic structure of the isolated molecule, and in
turn on its topology and connectivity. This enables us to make
a comparison between the relative transmissions of different
types of molecules.

In Secs. IV–X we will continue to work with this rela-
tive transmission instead of the complete expression for the
transmission probability.

IV. KEKULÉ STRUCTURES AND RELATIVE
TRANSMISSION

What we say in this section is familiar to the graph-
theoretical community. Who, we hope, will forgive us for
the pedagogical exposition to introduce this subject. In the
early days of MO theory, it was important to establish a con-
nection between valence bond (VB) structures and MO ener-
gies. Though much of the impetus has faded, the relationship
remains important. For even alternant hydrocarbons that do
not contain 4n-membered rings, it is possible to relate ∆(0) to
the number of Kekulé structures, K, of the original molecule
(∆ (0) = (−1)N/2 K2) and ∆rs,rs(0) to the number of Kekulé

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-010796
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structures of the molecule in which the connection atoms r and
s have been deleted, K

�rs (∆rs,rs(0) = (−1)(N−2)/2K2
−rs).

18,19

To better understand the origin of these remarkable rela-
tions, we first show the relationship between the number of
Kekulé structures and the Hückel Hamiltonian matrix. We

begin by regrouping the rows and columns of the matrix
according to their corresponding set (first all zeros, then all
stars).20,21 Consider, for example, the Hückel Hamiltonian
matrix of benzene with the same numbering as in Fig. 1, as
follows:

H=

0 ∗ 0 ∗ 0 ∗
1 2 3 4 5 6

0
∗

0
∗

0
∗

1
2
3
4
5
6



0 1 0
1 0 1
0 1 0

0 0 1
0 0 0
1 0 0

0 0 1
0 0 0
1 0 0

0 1 0
1 0 1
0 1 0



→ H =

0 0 0 ∗ ∗ ∗
1 3 5 2 4 6

0
0
0
∗

∗

∗

1
3
5
2
4
6



0 0 0
0 0 0
0 0 0

1 0 1
1 1 0
0 1 1

1 1 0
0 1 1
1 0 1

0 0 0
0 0 0
0 0 0



. (13)

In the regrouped block matrix (Eq. (13), right), each 1
in the upper right or lower left block corresponds to a formal
(double) bond in the conjugated system of the molecule. For
an even alternant hydrocarbon, one or more combinations of
bonds can be constructed in one of either blocks so that every
carbon atom takes part in one and only one double bond. Each
of these possible combinations is by definition a Kekulé struc-
ture (for example, see Fig. 2 for benzene; the matrix entries
corresponding to the structure below each matrix are in bold).

A similar connection can be made between ∆rs,rs(0) and
K−rs.

It is not always possible to draw a Kekulé resonance struc-
ture for the original and/or “deleted” molecule. Consider, for
example, the matrix for “1,3-deleted” benzene, corresponding
to ∆13,13, as follows:

5 2 4 6
5
2
4
6



0 0
0 0

1 1
0 0

1 0
1 0

0 0
0 0



. (14)

For such a system, it is impossible to pair up all carbon atoms
to obtain a Kekulé structure by selecting double bonds in every

FIG. 2. Kekulé structures of benzene corresponding to the selection of the
double bonds in the matrices above.

row and column of the upper right or lower left block of the
matrix. As a result, in order for every carbon atom to be
selected once, on-site zeros (elements on the main diagonal
of the matrix) have to be selected in these cases, leading to
radical centers on these carbon atoms (unpaired carbon atoms,
with the attendant electrons). For the “1,3-deleted” benzene
corresponding to the matrix in Eq. (14), at least 2 such zeros
have to be selected in this way, thus giving rise to two radical
centers. Two such diradical structures are formed in this case
(Fig. 3).

We return to the relationship between the relative trans-
mission and the characteristic polynomials evaluated at E = 0,
Eq. (12). The characteristic polynomials in this expression can
be expressed as determinants according to Eqs. (3) and (6).
∆(E) is shown for benzene as follows:

∆(E)=

��������������

E 0 0
0 E 0
0 0 E

−1 0 −1
−1 −1 0
0 −1 −1

−1 −1 0
0 −1 −1
−1 0 −1

E 0 0
0 E 0
0 0 E

��������������

=

��������������

−E 0 0 1 0 1
0 −E 0 1 1 0
0 0 −E 0 1 1
1 1 0 −E 0 0
0 1 1 0 −E 0
1 0 1 0 0 −E

��������������

.

(15)

FIG. 3. Diradical structures of benzene without carbon atoms 1 and 3
corresponding to the selection of matrix elements in the matrices above.



092310-4 Stuyver et al. J. Chem. Phys. 146, 092310 (2017)

The computation of such a determinant of an n x n matrix
involves a similar procedure of matrix element selection as
the one used in the analysis above in exploring the relation
between the Hamiltonian matrix and the Kekulé (or diradical)
structures. In the Leibniz formula (Eq. (16)),22 a determinant
can be equated to a sum of terms, each of these being a com-
bination of matrix elements so that every row and column is
selected only once in that term,

det(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

ai,σi . (16)

Here the sum is computed over all permutations σ of the set
{1, 2, . . ., n}. The set of all such permutations is denoted by
Sn. For each permutation σ, sgn(σ) denotes the signature of
σ (+1 or −1), and ai,σi denotes the matrix element in the ith
row and σi th column.

When the determinant in Eq. (15) is calculated in this way
for E = 0, the only terms differing from zero in Eq. (16) will
be the ones where only matrix elements with value 1 have been
selected. For both the upper right and lower left block of the
determinant in Eq. (15), the number of non-zero terms that can
be obtained this way is equal to K, as we demonstrated in the
analysis above. For all even alternant hydrocarbons except 4n-
membered rings (or hydrocarbons containing 4n-membered
rings), these terms can simply be added according to Eq. (16)
since sgn(σ) will be the same for every term.23–25 So, the
determinant of each of both these blocks will be proportional
to K. Since the determinant of a block matrix can be expressed
as the product of the determinants of its blocks, this means that
det(H), or ∆(0), will be proportional to K2.

Let us think about a situation where it is impossible to
draw any full Kekulé structures for an even alternant hydro-
carbon. Such a situation occurs when the molecule is diradical,
tetraradical, hexaradical, and so on. In this case, the character-
istic polynomial will contain at least two explicit E factors. As
such, the resulting characteristic polynomial will be equal to
zero when E → 0, and this zero root will have a multiplicity
of at least two. The exact multiplicity depends on the number
of radical centers in the structure.

In short, the connection established above demonstrates
that there is a one-to-one relationship between the number
of Kekulé structures of a molecule and the corresponding
characteristic polynomial evaluated at the origin. As a result,
when it is impossible to draw a Kekulé resonance structure
for an even alternant hydrocarbon (K = 0), the characteris-
tic polynomial evaluated at the origin will evidently be zero

(∆ (0) = 0). The same is true of course for the “deleted
molecule” (K−rs = 0 → ∆rs,rs(0) = 0). When it is impossi-
ble to draw a Kekulé structure, the number of radical centers
in the radical structure corresponds to the multiplicity of the
zero root in the characteristic polynomial.

V. FOUR LIMITING SITUATIONS

Returning to the expression for the relative trans-
mission in terms of characteristic polynomials, T rel

r,s (0)
= −∆rs,rs(0)/∆(0), four distinct situations can now be distin-
guished:
1. If ∆(0) , 0 and ∆rs,rs(0) = 0, then the relative transmis-

sion will go to zero.
2. If ∆(0) , 0 and ∆rs,rs(0) , 0, then the relative transmis-

sion will be a real, non-zero number differing from zero.
3. If ∆(0) = 0 and ∆rs,rs(0) , 0, then the relative transmis-

sion will go to infinity.
4. If ∆(0) = 0 and ∆rs,rs(0) = 0, then the relative transmis-

sion can either be zero, be a real, non-zero number, or go
to infinity.

Of these four situations, the first and second have been
explored in detail before.1,2,4,6,7,26 The starting point for both
is an even alternant hydrocarbon (which do not contain 4n-
membered rings) for which a Kekulé resonance structure
can be drawn (e.g., benzene; K , 0 → ∆ (0) , 0).
The first situation corresponds to configurations of contacts
that demonstrate destructive quantum interference (e.g., con-
tacts connected meta on benzene). If the starting molecule
considered is an alternant hydrocarbon, it is impossible to
draw a Kekulé structure for the r and s deleted system in
this situation (K−rs = 0). As a result, unpaired electrons are
present in this “deleted” molecule (making it a diradical or
two separate monoradicals), leading to energy levels at the
Fermi level (E = 0), namely, non-bonding molecular orbitals
(NBMOs), and a characteristic polynomial (∆rs,rs) that is zero
at this E-value. As a result, the relative transmission will be
zero at the Fermi level, leading to quantum interference (see
Fig. 4(a)).

The second situation corresponds to configurations of
contacts that do not lead to quantum interference (e.g., para
on benzene, see Fig. 4(b)). For these systems, we can con-
struct Kekulé structures for both the original and the “deleted”
molecular graphs (K , 0; K−rs , 0), so both characteristic
polynomials differ from zero at the Fermi energy (E = 0),
leading to a defined (and non-zero) relative transmission.

FIG. 4. (a) Deletion of carbon atoms in the 2nd and 4th
positions for benzene leads to only radical structures and
no Kekulé structures, so connection of contacts on these
positions leads to quantum interference close to the Fermi
level. (b) Deletion of carbon atoms in the 1st and 4th
positions for benzene leads to one Kekulé structure, so
connection of contacts on these positions gives rise to a
defined relative transmission differing from zero.



092310-5 Stuyver et al. J. Chem. Phys. 146, 092310 (2017)

FIG. 5. Deletion of the radical centers in a diradical molecule leads to a
Kekulé structure, so connection of contacts on these positions leads to an
infinitely big relative transmission. (a) The contacts are attached to the radical
sites, while in (b) the contacts are attached to the non-radical sites where the
radicals can delocalize.

The starting point for the third and fourth situations is a
(poly)radical so that ∆(0) = 0 (e.g., trimethylenemethane). In
the third situation, the original molecule has to be a diradical
(K = 0 → ∆ (0) = 0) and the “deleted molecule” has to have
at least one Kekulé resonance structure (K−rs , 0) so that
∆rs,rs , 0, leading to an infinitely big relative transmission. In
order to go from a diradical to a molecule, for which one can
draw a Kekulé structure, the radical centers have to disappear.
A radical center can be made to disappear by deleting one of
the carbon atoms to which that radical can delocalize. Two
examples are shown in Fig. 5.

We are well aware of the difficulty of this situation ever
being realized. Diradicals rarely have much kinetic persis-
tence, even if they are detected. Attaching contacts to the
radical sites, in order to study conductivity experimentally,
will be very difficult. The situation is to be viewed as a limit,
describing an approach to a diradical. In the second part of the
paper, we will describe realistic, relatively stable molecules
that do just this.

The fourth situation is the most exotic of all. In order for
the relative transmission to go to zero in this situation, the
original radical centers cannot disappear after deletion, and
additional radical centers have to be formed. An example is
given in Fig. 6.

Because of the earlier mentioned proportionality of the
number of radical centers and the multiplicity of the zero
root in the characteristic polynomial, if the number of radical
centers in the deleted molecule is larger than the number of
radical centers in the original molecule, the multiplicity of
the zero roots in the numerator of Eq. (12) (∆rs,rs) is higher
than the multiplicity in the denominator (∆).12 The zero roots
are associated with factors of E, not E – x, in the character-
istic polynomials. Application of L’Hôpital’s rule a sufficient
number of times27 gives rise to only zero roots in the numer-
ator and a denominator differing from zero at the origin, thus
devolving back into situation 1 (QI).

In order for the relative transmission to be a real, non-
zero number, the original radical centers cannot disappear after
deletion, but neither should new centers be formed. Fig. 7
shows an example.

This can be easily understood as follows. Because the
number of radical centers remains the same, the multiplicity
of the zero root in numerator and denominator of the expres-
sion for the relative transmission is equal,12 and application of
the L’Hôpital’s rule leads to a defined fraction in the expres-
sion of the relative transmission. Thus this case devolves into
situation 2.

The relative transmission in the fourth situation can only
go to infinity if the starting molecule has more than 2 radical
centers, where the “deleted molecule” has 2 radical centers less
than the original one. Through the same reasoning as before,
application of L’Hôpitals rule a sufficient number of times,
this fourth case devolves into situation 3. Fig. 8 shows two
examples.

The analyses of situations 3 and 4 lead to the conclu-
sion that diradicals (and polyradicals) can have infinitely big
relative transmission around the Fermi level if and only if
the positions of the contacts are chosen on carbon atoms to

FIG. 6. If the number of radical centers
increases after deletion, then connection
of contacts on these positions gives rise
to a quantum interference close to the
Fermi level.

FIG. 7. If the number of radical cen-
ters stays the same after deletion, then
connection of contacts on these posi-
tions gives rise to a defined (non-zero)
transmission probability.
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FIG. 8. If the number of radical centers
drops after deletion, then connection of
contacts on these positions gives rise to
an infinitely big relative transmission.

which the radical centers can delocalize. If other positions are
taken, the relative transmission either becomes a real, non-zero
number or zero.

Before we go on, it is important to make three points.
First we have glibly said “diradical.” We are fully aware of the
complexity and richness of what might be called “the diradi-
cal situation.” Six microstates arise from the placing of two
electrons into two degenerate or nearly degenerate orbitals
—three singlets and a triplet.28,29 Depending on the symmetry,
the singlets may or may not be subject to a first- or second-
order Jahn-Teller distortion.30 We will return to a detailed
consideration of the behavior of the various diradical states
elsewhere.

Second, the relationship between the characteristic poly-
nomial and the number of Kekulé structures laid out above does
not hold for 4n-membered rings (and hydrocarbons that con-
tain such a ring), because the terms corresponding to the differ-
ent Kekulé structures will cancel each other out in Eq. (16) in
general.23–25 The simplest example of this class of molecules
is cyclobutadiene (CBD). In the simple Hückel model, all res-
onance integrals are taken equal, corresponding to a perfect
square geometry (D4h) for CBD. Although it is possible to
draw two completely equivalent Kekulé resonance structures
for this molecule (K = 2), the molecule will be a diradi-
cal in this approximation, having two degenerate NBMOs
at E = 0. A detailed analysis of the interesting transmission

FIG. 9. Transmission probability as a function of the relative transmission
(indicated by the bold line). β̃ was set at 0.04 (weak interaction), and the
relative transmission was varied from 1 to 50.

possibilities offered up by substituted CBDs, some of which
can be stabilized, is given in the supplementary material.

Finally, the terminology of “infinite relative transmission”
is guaranteed to make believers in the first law of thermody-
namics blanch. We therefore turn to a detailed discussion of
what this phrase implies.

VI. RELATIVE TRANSMISSION VS. TRANSMISSION
PROBABILITY

How is the relative transmission of a molecule related to
the actual transmission probability of the resulting molecular
electronic device? Let us rewrite Eq. (10) by dividing both
numerator and denominator by ∆2 (0)

Tr,s (0) = lim
E→0

−4 β̃2 ∆rs,rs(E)
∆(E)

1 − 2 β̃2 ∆rs,rs(E)
∆(E) + β̃

4 ∆
2
rs,rs(E)
∆2(E)

, (17)

which is equivalent to

Tr,s (0) =
4 β̃2T rel

r,s (0)

1 + 2 β̃2T rel
r,s (0) + β̃4T rel2

r,s (0)
. (18)

It is clear from Eq. (18) that the approximation leading to
Eq. (11) is only valid when β̃2T rel

r,s (0) is sufficiently small so
that the second and third terms in the denominator can be
neglected. Only in this case the transmission probability is
directly proportional to the relative transmission.

In the literature, βMC values of 0.2 are commonly used
for realistic junctions.1,2 Setting βC to 1 then leads to a value
for β̃ of 0.04 (see Eq. (7)). For such a value of β̃, Eq. (11) is
a very good approximation up to relative transmission values
of approximately 50. In Fig. 10, the change of the transmis-
sion probability with the value of the relative transmission is
calculated according to Eq. (18), and plotted by a bold line.
If the approximations hold, the slope should be 4 β̃2. When
β̃ = 0.04, 4 β̃2 = 0.0064, which is close to the numerically
approximated value of 0.0055 (Fig. 9).

Even for much higher values than 50, the relative transmis-
sion remains a good indicator for the transmission probability.
Even though the direct proportionality between the two quan-
tities is now no longer valid, a higher relative transmission

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-010796
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will still result in a higher transmission probability, up to the point where a maximum (Tr,s (0) = 1) is achieved. This maximum
value can be determined by setting the derivative of the transmission probability to the relative transmission to zero. The following
analytical expression for the derivative can be obtained:

∂Tr,s (0)

∂T rel
r,s (0)

=
4 β̃2

(
1 + 2 β̃2T rel

r,s (0) + T rel2

r,s (0)
)
− 4 β̃2T rel

r,s (0)
(
2 β̃2 + 2 β̃4T rel

r,s (0)
)

(
1 + 2 β̃2T rel

r,s (0) + β̃4T rel2

r,s (0)(0)
)2

=
4 β̃2

(
1 − β̃4T rel2

r,s (0)
)

(
1 + 2 β̃2T rel

r,s (0) + β̃4T rel2

r,s (0)
)2

. (19)

Equating this expression to zero leads to a root at T rel
r,s (0)

= 1
/
β̃2. Filling in the chosen value of β̃ means that a maximal

transmission probability is obtained at a relative transmis-
sion of 625 (1/0.042). Beyond this maximum, the transmis-
sion probability will start decreasing with increasing rela-
tive transmission. This decrease however is very slow, lead-
ing to transmission probabilities still quite close to unity at
relative transmission values well beyond 1000. This is illus-
trated graphically in Fig. 10.

The relative transmission as an indicator for the transmis-
sion probability only starts failing at the most extreme values
for the relative transmission. When β̃2T rel

r,s (0) becomes suffi-
ciently large, the third term in the denominator of Eq. (10) will
predominate so that the first and second terms can be neglected,
leading to

Tr,s (0) =
4

β̃2T rel
r,s (0)

. (20)

This demonstrates that in extreme cases where the relative
transmission approaches infinity, the actual transmission prob-
ability becomes inversely proportional to the relative trans-
mission even for the case of the weak interaction between
the molecule and the contacts. For the construction of a real-
istic molecular device, the aim would then be to approach
T rel

r,s (0) = 1
/
β̃2. This is the sweet spot.

As mentioned in Sec. V, the only type of molecules that
can have a relative transmission approaching infinity is a per-
fect diradical or polyradical (corresponding to ∆ = 0). As
we said, it is not easy to attach contacts to a diradical—most
lack kinetic persistence. Also realistic analysis would need

FIG. 10. Transmission probability as a function of the relative transmission.
β̃ was set at 0.04 (relatively weak interaction), and the relative transmission
was varied from 1 to 1000.

to consider the different available states (triplet, closed, and
open-shell singlets) of a target diradical. In the remainder
of our argument below, we will generally not consider such
molecules. Instead, we will focus on closed-shell molecules
for which diradical resonance structures have some weight,
perhaps a substantial one, in the resonance hybrid.31 As long
as we stay far enough away from a real diradical (and thus also
from a potentially infinitely big relative transmission), the rela-
tive transmission remains a good indicator for the transmission
probability.

Now that the relationship between relative transmission
and transmission probability has been clarified, we will shift
our focus to the main idea we want to explore in this paper,
which that chemical intuition can be used to tune the conductiv-
ity of molecules under a small bias by “pushing” a molecule
towards more or less “diradical character.” The four situa-
tions distinguished in Sec. V will be used as a starting point
and we will mainly focus on the relative transmission. We will
not explicitly make the link with the transmission probability
at every single instance due to the direct proportionality we
illustrated above.

A side note to be made is that whenever the diradical
character of a molecule will be discussed throughout this text,
we refer to the relative importance of the diradical resonance
structures in the total resonance hybrid. For a detailed descrip-
tion of diradical(oid)s, we refer to some excellent work in the
literature.28,29,32

In a first stage, we focus on the simplest class of alternant
hydrocarbons, linear polyenes.

VII. LINEAR POLYENES

Bond alternation explains the exponential drop-off in the
relative transmission with increasing length for even linear
polyenes.33 Since an even carbon atom polyene has a single
basic Kekulé structure (K = 0), we are in situation 1 or 2 of
Section V; depending on the placement of the contacts, one has
either QI or a definite transmission. If the electrodes are placed
at the termini of the chain, and if there is no bond length alter-
nation, the relative transmission will be unity, independently
of the length of the wire.

This is in clear contradiction with experimental results,
which all indicate an exponential drop-off of the conductance
with the length.34,35 This expected behavior can, however, be
retrieved computationally by taking into account the obvious,
which is that the equal-length structure is not an energy mini-
mum, but distorts exactly in the direction indicated by a Kekulé
structure (Fig. 11 left, drawn for 8 carbons).33
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FIG. 11. Polyene skeleton with the resonance integrals
(top). The dominant resonance structure with ta > tb
(lower left). An important (dominant) resonance structure
with ta < tb (lower right).

Defining ta as the resonance integral between C2n−1 and
C2n and tb as the resonance integral between C2n and C2n+1

(Fig. 11 top) implies that ta > tb. Exponential decrease of the
conductance with the length of the polyene is then obtained
indeed.33

What would happen if we could somehow invert this sit-
uation and take ta < tb? In that case, calculations indicate that
an exponential increase in the relative transmission can be
expected.33

If we wish to describe this situation (ta < tb) by a resonance
structure, we are drawn to one in which the double bonds come
between the pairs of carbon atoms that are associated with the
larger resonance integral, tb. When we do this, an unpaired
electron remains on each side of the chain (Fig. 11 right). This
corresponds to a diradical resonance structure!

Working with our intuition (the full valence bond (VB)
calculations will in time be done), the longer the polyene
becomes for the ta < tb case, the more weight will this dirad-
ical resonance structure get, because all those more favorable
double bonds between atoms with a higher resonance integral
would have to be broken in order to get rid of the two radi-
cal centers at the ends of molecule. As a result, connection of
contacts at these chain end positions thus becomes increas-
ingly reminiscent of situation 3 (the relative transmission
increases).

For the other case, the normal one, ta > tb, the reverse
happens—the longer the chain becomes, the smaller the weight
of the extremely separated diradical resonance structure. This
is what emerges from detailed calculations of Gu, Wu, and
Shaik,36–38 sketched in the supplementary material. Connec-
tion of the contacts at the chain end positions in this case
resembles more and more situation 2, and, as mentioned,
the relative transmission decreases (exponentially) with chain
length.

This analysis for linear polyenes clearly illustrates that
adjustments of the resonance integrals/bond distances provide
an option to tune the diradical character and thus improve the
transport properties of a molecule. Recent work by Proppe and
Herrmann on the influence of bond stretching on the transmis-
sion probability points in the same direction.8 However, we
have to face up to reality—it is very hard to control or influ-
ence in a chemical way the bond lengths in a polyene in the
way we want, so that ta < tb. A better strategy to improve the
conductance of a molecule might be to find a structural element
that has the same effect as bond alternation on the weight of

diradical resonance structure in the resonance hybrid. Aro-
matic rings turn out to be good candidates for this.

VIII. MOLECULAR WIRES THAT DIFFER MARKEDLY

Consider the following two wires, oligo( p-phenyl) and
oligo(pheno)-p-quinodimethane, and focus on the MED in
which these molecules are connected to the contacts through
the ends of the wires (Fig. 12).

Although these structures are exactly equivalent except
for two terminal methylene groups, their chemical proper-
ties could not differ more. Recent calculations demonstrated
completely opposite trends in the evolution of the transport
properties with the length of the chains for these molecules.5,6

Our new insights into the relation between diradical character
and relative transmission enable us to shed some new light on
these results.

We start by considering the “monomers” of both wires
first, benzene and para-quinodimethane (PQDM). For ben-
zene, the formation of a para-diradical resonance structure
(a single Dewar structure) effectively breaks the aromaticity
of the system. The weight of that Dewar structure is actually
substantial (10.2%; we thank Danovich and Shaik for a com-
putation here).39 As phenyl rings are added—for instance, in
moving to biphenyl, terphenyl etc.—more and more aromatic
benzene ring Kekulé structures would have to be broken to cre-
ate an α-ω diradical (the radical sites at the ends of the chain).
The weights of such diradical resonance structures should fall
rapidly with chain length.

The situation is very different for the quinoid chain. First
consider the “monomer,” para-quinodimethane, Fig. 13. In
addition to the normal valence structure, the quinoid one at

FIG. 12. oligo(p-phenyl) and oligo(pheno)-p-quinodimethane.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-010796
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FIG. 13. The Kekulé structure and (stabilized) diradical resonance structure
of p-quinodimethane.

the left-hand side of this figure, a diradical resonance structure
can be drawn. The number of double bonds decreases here
compared to the Kekulé structure, but aromaticity is gained.
As such, we can expect an increase in the weight of this aro-
matically stabilized diradical resonance structure compared
to the equivalent polyene. According to the VB calculations
by Shaik and Danovich, the weight of these stabilized dirad-
ical resonance structures amount to 4.2% for the optimized
geometry. That is not large—there are in fact two factors work-
ing in opposite directions to produce this weight. The number
of electron shifts necessary to produce the diradical structure
reduces its weight, while the aromaticity gained in the diradical
increases it.

One can tune the contribution of this structure by equal-
izing the bond lengths in the central ring, thus increasing the
aromaticity of the central hexagon. The weight increases to
17% when this is done (for details, see the supplementary
material).39

Other measures point towards a significant diradical char-
acter for PQDM. Based on the occupation of the lowest for-
mally unoccupied natural orbital, Nakano and co-workers, for
example, obtained a value for the diradical character of 15%.40

We have probed the effect of the aromatic ring on the trans-
mission probability by excising a hexatriene from the quinoid

structure of Fig. 13 (i.e., deleting one of the central ring dou-
ble bonds), and calculating the transmission 1,4 vs 1,6 in that
triene. It falls off with the number of intervening double bonds,
as expected for a bond-alternated oligoene. We compared this
with a similar transmission when the benzene ring is com-
pleted (i.e., the PQDM in Fig. 13). Then the corresponding
transmission order is reversed—the longer path actually gives
a bigger transmission probability. And the effect is augmented
when benzene bond lengths are equalized. Details are given in
the supplementary material.

On extending the structures linearly, the trend is rein-
forced. In order to obtain a diradical resonance structure in
biphenyl, two aromatic rings have to be broken. On the other
hand, pheno-p-quinodimethane (also known as Chichibabin’s
hydrocarbon) gains two aromatic rings, making this resonance
structure even more important in the resonance hybrid for
this molecule than it was for the monomer (see Fig. 14).
Steric effects between the phenyl rings (see discussion in
supplementary material) enhance the differential behavior.

This trend persists as we move on to longer and longer
wires. While the importance of the diradical resonance
structures decreases with the length of the wire for oligo(p-
phenylene), their importance increases for oligo(pheno)-p-
quinodimethane. Calculation of the relative transmission
around the Fermi level (see Fig. 15) in the simple Hückel model
(all resonance integrals are set to be equal) leads to the con-
clusion that for oligo(p-phenylene) the relative transmission
(and thus the conductance) drops exponentially with the length
of the chain, whereas for oligo(pheno)-p-quinodimethane
the relative transmission increases exponentially.5,6 Just as
before, the importance of the diradical resonance structures
in the resonance hybrid determines the conductivity of these
molecules.

There is something very interesting about the large rel-
ative transmission calculated (greater than 1000 for n = 5).
Recall here our discussion of the relation between transition

FIG. 14. The diradical resonance structures of biphenyl
(top) and pheno-p-quinodimethane, or Chichibabin’s
hydrocarbon (bottom).

FIG. 15. The exponential decay of
the relative transmission for oligo(p-
phenylene) (left) and the exponential
growth of the relative transmission for
oligo(pheno)-p-quinodimethane (right)
with an increasing number of phenyl
units.6

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-010796
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probability and relative transmission, and its dependence on
the amount of coupling between the molecule and the con-
tacts. Given our assumptions, the maximum of the transmis-
sion probability should be located somewhere between the
relative transmission values of tri- (n = 4) and tetra(pheno)-p-
quinodimethane (n = 5).

Detailed DFT calculations (computational details in
supplementary material) were performed to verify these pre-
dictions. The transmission spectra of both oligo(p-phenylene)
and oligo(pheno)-p-quinodimethane are presented in the
supplementary material; a plot of the transmission probability
at the Fermi level as a function of the length of the wires can
be found in Fig. 16.

From this figure it can be clearly seen that as the chain
becomes longer for oligo(p-phenylene), the transmission prob-
ability at the Fermi level decreases exponentially in accordance
with our predictions. If we use a geometry in which all the
benzene rings are forced to be in the same plane (denoted by
PP’(n)), the decrease in transmission is less pronounced, but
still exponential.

For oligo(pheno)-p-quinodimethane, the transmission
probability across the molecule increases with the length of the
chain up to tri(pheno)-p-quinodimethane (n = 4), after which
it decreases. This also corresponds qualitatively to our predic-
tions. The maximum in the transmission probability curve is
already reached somewhat before n = 4 (see Fig. 16), because
the coupling between the molecule and the contacts is set
slightly stronger in these DFT calculations than the general
estimate we have introduced at the Hückel level in Section VI
( β̃ = 0.04).

Our analysis leads to the conclusion that for oligo(pheno)-
p-quinodimethane, the conductivity increases with the length
of the molecule up to at least tri(pheno)-p-quinodimethane
(n = 4). This startling result might come across as counterintu-
itive and unphysical. But, as we will detail later on, although
these specific molecules have not yet been studied experimen-
tally, experimental data for related classes of molecules41–43

appear to confirm our general assertion of the proportionality
between the weight of diradical resonance structures in the
resonance hybrid—and the role played by aromatic rings in
driving this weight up (or down)—and the conductance of a
molecule.

FIG. 16. Transmission probability at the Fermi level as a function of
the number of benzene rings calculated for oligo(p-phenylene) (PP(n))
and oligo(phenol)-p-quinodimethane (PQ(n)). PP′(n) indicates oligo(p-
phenylene) molecules optimized under the restriction that all the benzene
rings are in the same plane.

IX. POLYCYCLIC AROMATICS—NANOGRAPHENES

The ideas introduced here relating the contribution of
diradical resonance structures in the resonance hybrid to
enhanced transmission can also be expanded to a related
group of molecules, the polycyclic benzene-ring extensions
of anthracene and phenanthrene, or “nanographenes.” In the
electronic structures of these, as we examine possible dirad-
ical structures, any loss of aromaticity will come with an
energetic penalty, diminishing the contribution of the dirad-
ical resonance structures to the resonance hybrid, compared to
non-aromatic (bond-equalized) conjugated systems in which
double bonds can be broken without a loss or gain of aro-
maticity. We need a measure of this penalty, and in the absence
of complete VB calculations for the higher hydrocarbons, we
choose to look at the experimental/theoretical value of the res-
onance or delocalization energy involved.44,45 For benzene this
is 36 kcal/mol.

For anthracene, not all diradical structures are subject to
the same energetic penalty anymore. Consider, for example,
a positioning of the radical centers on opposite sides of the
central ring (at carbons 9 and 10 in the conventional numbering
scheme, Fig. 17). The energetic penalty in this case is strongly
reduced because the loss of the aromaticity of the anthracene
ring is almost completely compensated by a gain in aromaticity
of two benzene rings (the resonance energy of anthracene is
determined at 80 kcal/mol,45 so the penalty is estimated to
drop to approximately 8 kcal/mol).

All other diradical resonance structures for anthracene
are associated with a far higher energetic penalty, since they
lead either only to the gain of one naphthalene (resonance
energy estimated to be 60 kcal/mol)45 or a single benzene (see
supplementary material for discussion). As a result, the 9,10-
diradical resonance structure should be the main diradical
contributor to the resonance hybrid and its relative weight
likely will be higher than for the benzene resonance struc-
ture in which the radical centers are placed in para-position.
As such, we can expect that, when contacts are placed
at these positions, the relative transmission will be bigger
than for para-connected benzene. These predictions have
been confirmed both theoretically and experimentally.41–43

FIG. 17. The likely main diradical resonance structure of anthracene.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-010796
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FIG. 18. The main diradical resonance structure expected for pentacene.

For pentacene (Fig. 18), a similarly stabilized diradical
resonance structure can be drawn, this time with the forma-
tion of two naphthalene rings. For this resonance structure,
the modification in the aromaticity pattern no longer leads to
an energetic penalty in our line of reasoning, but to a stabiliza-
tion. The loss of aromaticity of the pentacene ring (resonance
energy estimated at 117 kcal/mol)45 is more than compensated
by the gain in aromaticity of the two naphthalene rings formed.
Resonance structures with diradicals elsewhere on the zigzag
edges will have larger penalties, lower weights.

As more benzene rings are attached, we can expect this
trend to continue. The contribution of diradical resonance
structures with radical centers on the zigzag edges to the res-
onance hybrid should increase, and as such the relative trans-
mission increases when contacts are connected to those edges.
The main driving force for this effect is the gradual decrease
in the additional resonance energy when more benzene rings
are added—in the table by Wiberg,45 the additional resonance
energy per benzene unit added decreases from 24 kcal/mol,
on going from benzene to naphthalene, up to 18 kcal/mol on
going from naphthacene to pentacene.

In the limit of an infinitely long polyacene, the diradi-
cal resonance structures should predominate,46–48 which leads
to the conclusion that the HOMO-LUMO gap for such a
molecule should be 0, corresponding to an infinitely big rela-
tive transmission. This is indeed what is observed for zigzag
nanographene.49,50

Armchair nanographene, on the other hand, is expected to
have a finite bandgap49–51 Can this result also be retrieved from
our reasoning? Consider the smallest possible armchair-like
nanographene approximant, phenanthrene. For this molecule,
it is impossible to draw a much stabilized diradical reso-
nance structure as was done for anthracene. The best one,
the 9,10-diradical structure (Fig. 19), still has an associated
energetic penalty since the loss of the aromaticity of phenan-
threne (resonance energy estimated at 85 kcal/mol)45 cannot
be compensated in the same way as for anthracene by the
gain in aromaticity of two benzene rings. That the transmis-
sion probability between atoms 9 and 10 is the highest of all
possible phenanthrene connections is completely consistent
with the detailed theoretical calculation by Yoshizawa and
co-workers.1

Since attachment of more benzene rings to this system
leads to a uniform increase of the resonance energy (see the
table by Wiberg;45 +24 kcal/mol resonance energy extra per
ring), this penalty will not decrease as the molecule becomes

FIG. 19. Phenanthrene and one of its main (destabilized) diradical resonance
structures.

longer. For example, for picene (resonance energy estimated
to be 133 kcal/mol),45 the most stabilized diradical resonance
structures (which are presented in the supplementary material)
will have a similar or higher penalty than phenanthrene.

As a result, the weight of the diradical resonance struc-
ture in the resonance hybrid will remain relatively small for
armchair nanoribbons (with a finite number of armchairs),
leading to a low diradical character, and, associated with that,
a finite bandgap. This reasoning about the difference in diradi-
cal character between zigzag and armchair nanographene is
also supported by the recent work by Champagne and co-
workers.52 The difference in band gap between zigzag and
armchair nanographenes can also be understood in the light of
orbital interactions.53

X. OLIGOPHENYLENE MACROCYCLES

In conclusion, we consider a class of molecules that com-
bines the two strategies presented before to modify the rela-
tive transmission, which were based on bond alternation and
exploitation of aromaticity in resonance structures, respec-
tively. Consider an oligophenylene macrocycle; a prototype
of this structural type is depicted in Fig. 20. Such macrocycles
have recently been synthesized.54–56

The carbon atoms of the π-system in Fig. 20 hardly lie
in the same plane. In reality, the macrocycle will be bent into
an approximant to a circular belt, which could have an effect

FIG. 20. Cyclo-p-hexaphenylene with its quinoid resonance structure.
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on the overlap of the pz-orbitals of the adjacent carbon atoms.
However, due to the size of the macrocycle, the resulting angle
between each pair of adjacent pz-orbitals separately will be
quite moderate. Accordingly, the reasonable assumption we
made is that the overlap integrals (and thus also the resonance
integrals) will not be altered dramatically by the bending.

The ground state resonance hybrid of such a macrocycle
has contributions from both aromatic and quinoid resonance
structures. The number of aromatic resonance structures that
can be drawn (26 = 64) is much higher than the number of
quinoid structures (1). As such, it is likely that if all nearest-
neighbor resonance integrals in this molecule are set equal,
the aromatic resonance structures will swamp the quinoid
structures. The net result is that it is likely that the molecule
will mainly behave as an oligophenyl ring. However, it has
been demonstrated experimentally that decreasing the num-
ber of benzene rings can increase the weight of the quinoidal
form.55b,57 The strain-induced increase of the quinoidal con-
tribution leads to an interesting dependence of the HOMO-
LUMO gap on the number of the phenyl rings. Usually the
more extensive π conjugation of molecules is, the smaller
HOMO-LUMO gap they possess, but in the case of cyclo-p-
phenylenes, the HOMO-LUMO gap increases as the number
of phenyl rings increases.57

Computationally the weight of the quinoid structures in
the resonance hybrid can be increased by modifying the res-
onance integrals between the pairs of carbon atoms that carry
a double bond in those structures. The effect on the transport
properties of even a modest modification of the resonance inte-
grals (e.g., a uniform modification to 0.9 for single bonds and
1.1 for double bonds in the quinoid resonance structure) is sur-
prisingly big. For example, when contacts are placed in the way
as shown in Fig. 21, the relative transmission rises from 0.004,
when all resonance integrals are kept equal (polyphenylene
structure), to 0.053 when the resonance integrals are modified
(quinoid structure).

This behavior is easily rationalized. If the molecule could
be fully described as a polyphenylene (Fig. 22, left), then the
importance of the diradical resonance structures in the reso-
nance hybrid would be low, because in order to obtain such
a diradical structure, at least one aromatic ring would have to
be broken. The diradical structure in which the radical cen-
ters are located on the contact positions is one of the most
destabilized diradical resonance structures possible for the

FIG. 21. Cyclo-p-hexaphenylene molecular electronic device with the pro-
posed attachment sites of the contacts denoted by arrows.

considered molecule, because it demands 4 aromatic rings be
broken (Fig. 22, middle).

On the other hand, if the molecule could be fully described
as a “quinoid” (Fig. 22, right), the diradical structures would be
more important in the resonance hybrid because these struc-
tures are “aromatically stabilized” The more aromatic rings
may be drawn in the diradical structure, the more important
the structure will be (Fig. 22, middle).

Since the adjustment of the resonance integrals increases
or decreases the contribution of the quinoid structures to
the resonance hybrid, we can expect the relative transmis-
sion for the chosen configuration of contacts to follow suit,
either increasing when the macrocycle becomes more quinoid-
like or decreasing when the cycle becomes more phenylene-
like. This explains qualitatively the ratio of relative trans-
mission of 13 between the two situations studied above
(0.053/0.004).

The effect can be enhanced by >2 orders of magnitude,
if we could modify the resonance integrals in the “unphysi-
cal” direction, putting a bigger integral between single-bonded
carbons. This will not be easy to do, but the analysis above
demonstrates that the effect of perturbations to the reso-
nance integrals/bond lengths can have spectacular effects on
the relative transmission by pushing the molecule towards
more or less diradical character. One could start to think that
such quinoid molecules could be interesting candidates for a
molecular switch.

FIG. 22. (A): The “phenyl-extreme”
of cyclo-p-hexaphenylene (left) and its
(destabilized) diradical structure with
the radical centers located at the contact
positions (middle); (B): the “quinoid-
extreme” of cyclo-p-hexaphenylene
(right) and its (destabilized) diradical
structure with the radical centers located
at the contact positions (middle).
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Due to sensitivity of the relative transmission to changes
in the resonance integral, we can expect that even small defor-
mations of the macrocycle will give rise to significant changes
in the conductance. A straightforward way to deform a macro-
cycle is the application of a small mechanical force. Actually,
there is an experimental observation that the application of a
stretching force can affect the conductance of a molecule.58

Another option would be side chains, which upon application
of a stimulus (light, heat, and chemicals) cause a strain on the
macrocycle and thus change the measured conductance. We
will explore these directions in future work.

We propose polyphenylene macrocycles as a poten-
tial mechanical molecular switch. While not the first of its
kind,59–61 and most definitely not the first molecular switch
proposed,59 this hypothetical system is a rare example of a
switch that does not exploit quantum interference in its switch-
ing mechanism (i.e., no transport channels canceling each
other out).62,63

XI. A DIFFERENT KIND OF WIRE

In Secs. VII-X, several systems were studied which
seemed to demonstrate an increase in the relative transmis-
sion (and thus also conductance) with an increasing length of
the molecule. As already mentioned before, this might come
across as counterintuitive and unphysical.

Usually, molecular wires are characterized through the
exponential law of conductance,64

G = G0e−γL, (21)

where γ denotes the damping factor. As such, one might
think that the conductance of a molecule has to decay with
its length.65 However, it has been demonstrated before that
for zigzag-edge nanographenes, a so-called “reverse exponen-
tial behavior” (γ < 0) is predicted.66 This “unusual” behavior
was explained as being the result of the unique localization of
the frontier orbitals on the zigzag-edges and the remarkable
decrease in the HOMO-LUMO gap.66 This can be understood
by considering the orbital expression for the transmission prob-
ability in the weak interaction limit (a derivation starting from
the characteristic polynomial expression can be found in the
supplementary material),20,67,68

Tr,s (0) = −4 β̃2
(
∆rs,rs (0)

∆ (0)

)
= 4 β̃2 *

,

∑
k

crkcsk

εk

+
-

2

, (22)

where crk is the MO coefficient on the rth atom in the kth MO
and εk is the kth MO energy with respect to the Fermi energy.
Both the orbital coefficients and the positioning of the energy
levels depend on the size/length of the molecule. In general, the
more extensive the molecule becomes, the more spread out the
orbitals are, leading to smaller orbital coefficients. On the other
hand, the HOMO-LUMO gap also decreases with the length of
the molecule. For most molecules, the decrease in the product
of orbital coefficients is faster than the decrease of the energy
differences between the orbitals and the Fermi level, thus lead-
ing to an exponential decrease in the transmission probability
with the length of the molecule.69 However, when the prod-
uct of the orbital coefficients on the connection sites decreases

more slowly than the decrease in HOMO-LUMO gap (εk → 0)
with increasing length of the molecule, the transmission prob-
ability at the Fermi level will rise with the length. This is just
what we saw in the case of oligo(p-phenyl) vs. oligo(pheno)-
p-quinodimethane molecular wires. The HOMO-LUMO gap
of oligo(pheno)-p-quinodimethane decreases much faster than
that of oligo(p-phenyl) as the number of phenyl rings increases
(see the supplementary material). A similar argument about the
balance between the HOMO-LUMO gap and the orbital coef-
ficients as determining factors for the transmission probability
was recently put forward by Proppe and Herrmann.8

The classical analogue of this phenomenon would be an
increase in the area of a conducting wire that is bigger than the
increase in the length of that wire,

Gclassical = σ
A
l

. (23)

The work of Tada and Yoshizawa identified nanographenes
as a first example of this curious phenomenon, but as the
present work demonstrates, this behavior is not restricted to
those systems. We identify here several classes of molecules
that have similar transport characteristics and demonstrate that
this behavior is linked to the importance of the contribution
of the diradical resonance structures to the resonance hybrid,
enabling the use of chemical intuition to tune (and in particular,
increase) the conductivity of molecules.

XII. CONCLUSIONS

In this work, an inherent measure of molecular conduc-
tion, “relative transmission,” was introduced, and its rela-
tion to transmission probability was carefully delineated. It
was demonstrated that this relative transmission is related to
the weight of the diradical resonance structures in the res-
onance hybrid. Chemical reasoning can then be marshaled
to tune the conductivity of molecules by making them more
or less diradical-like. We used these new insights to look
at a wide variety of conjugated alternant hydrocarbons and
were able to rationalize their transport properties. Molecular
chains can, in quite specific and understood circumstances,
become more conductive the longer they get, in contradic-
tion to what might have been expected intuitively. The effect
is strikingly demonstrated in oligo(pheno)-p-quinodimethane
chains. The proposal of a new potential molecular switch
(utilizing oligo-p-phenylene macrocycles) arises from our
considerations.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed recap of the
SSP method, the computational details, the detailed VB and
NEGF-DFT calculations, the diradical resonance structures
for anthracene and picene, the derivation of Eq. (22), and the
application of our new insights to cyclobutadiene.
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APPENDIX: COMPUTATIONAL DETAILS

An in-house program was developed to calculate relative
transmissions. In general, the simple Hückel theory was used
to construct the Hamiltonian matrices (β = 1), unless the reso-
nance integrals have been adjusted. Whenever this is the case,
the exact values of the resonance integrals will be mentioned. A
PYTHON code inverts the Hückel Hamiltonian matrices. The
elements of this inverse matrix can be related to the relative
transmission (see the supplementary material).

The DFT calculations on the molecular wires were per-
formed using the Non-Equilibrium Green’s Function (NEGF)
method combined with DFT as it is implemented in the Artaios
code:70,71 a postprocessing tool for Gaussian 09.72 Gold (111)
surfaces were chosen as the electrodes and thiol (—SH) as
an anchor unit to connect the molecules to the contacts. To
avoid steric hindrance between the bridged molecule and the
electrode surface, an ethynyl spacer (—C≡≡C—) was added
between the molecule and the thiol anchor unit. The resulting
molecular structures are shown in the supplementary material.
In the first step, the examined structures were optimized at
the B3LYP73/6-31G(d) level of theory, as implemented in
the Gaussian 09 software. After this optimization, the thiol’s
hydrogen atoms were removed and Au9 clusters, approximat-
ing the electrode surface, were attached in accordance with the
methodology presented in a recent study.74 The adsorption site
is the fcc-hollow site. The Au-S distance was set to 2.48 Å.75

For the resulting structures, single-point calculations were per-
formed at the B3LYP/LanL2DZ level of theory, again using
the Gaussian 09 software. In the final step, the Hamiltonian
and overlap matrices were extracted to carry out the NEGF
calculation within the wide-band-limit (WBL) approximation
using the post-processing tool Artaios.76 In the WBL approx-
imation, we used a constant value of 0.036 eV�1 for the local
density of states (LDOS) of the electrode surface. This value
was taken from the literature.76
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75A. Bilić, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 122, 094708

(2005).
76C. Herrmann, G. C. Solomon, and M. A. Ratner, J. Chem. Phys. 134, 224306

(2011).

http://dx.doi.org/10.1021/jp972799f
http://dx.doi.org/10.1021/ja807126u
http://dx.doi.org/10.1021/ja807126u
http://dx.doi.org/10.1021/ja205606p
http://dx.doi.org/10.1002/anie.201108167
http://dx.doi.org/10.1021/jo3011667
http://dx.doi.org/10.1039/c2sc20719b
http://dx.doi.org/10.1038/nchem.1888
http://dx.doi.org/10.1002/anie.200902617
http://dx.doi.org/10.1002/anie.200902617
http://dx.doi.org/10.1002/anie.201005734
http://dx.doi.org/10.1002/anie.201007232
http://dx.doi.org/10.1246/cl.2011.423
http://dx.doi.org/10.1039/c2sc20343j
http://dx.doi.org/10.1039/C3CC48683D
http://dx.doi.org/10.1016/j.tet.2015.02.066
http://dx.doi.org/10.1002/anie.200905659
http://dx.doi.org/10.1021/ja2020668
http://dx.doi.org/10.1021/ol301242t
http://dx.doi.org/10.1246/cl.130188
http://dx.doi.org/10.1021/ja413214q
http://dx.doi.org/10.1055/s-0034-1380714
http://dx.doi.org/10.1002/chem.201406650
http://dx.doi.org/10.1021/jacs.5b10855
http://dx.doi.org/10.1021/nl050860j
http://dx.doi.org/10.1039/C4CS00143E
http://dx.doi.org/10.1038/NCHEM.2588
http://dx.doi.org/10.1038/nnano.2009.10
http://dx.doi.org/10.1021/jp5081884
http://dx.doi.org/10.1021/acs.jpclett.6b00993
http://dx.doi.org/10.1103/PhysRevB.56.4722
http://dx.doi.org/10.1063/1.468315
http://dx.doi.org/10.1021/jp0310908
http://dx.doi.org/10.1063/1.1744701
http://dx.doi.org/10.1039/C5CP05423K
http://dx.doi.org/10.1063/1.3283062
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevB.37.785
http://dx.doi.org/10.1063/1.464913
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1021/j100096a001
http://dx.doi.org/10.1002/cphc.201402561
http://dx.doi.org/10.1063/1.1850455
http://dx.doi.org/10.1063/1.3598519

