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ABSTRACT: The energy change per electron in a chemical or physical
transformation, ΔE/n, may be expressed as Δχ ̅ + Δ(VNN + ω)/n, where Δχ ̅ is the
average electron binding energy, a generalized electronegativity, ΔVNN is the
change in nuclear repulsions, and Δω is the change in multielectron interactions
in the process considered. The last term can be obtained by the difference from
experimental or theoretical estimates of the first terms. Previously obtained
consequences of this energy partitioning are extended here to a different analysis
of bonding in a great variety of diatomics, including more or less polar ones.
Arguments are presented for associating the average change in electron binding
energy with covalence, and the change in multielectron interactions with electron
transfer, either to, out, or within a molecule. A new descriptor Q, essentially the
scaled difference between the Δχ ̅ and Δ(VNN + ω)/n terms, when plotted versus
the bond energy, separates nicely a wide variety of bonding types, covalent,
covalent but more correlated, polar and increasingly ionic, metallogenic, electrostatic, charge-shift bonds, and dispersion
interactions. Also, Q itself shows a set of interesting relations with the correlation energy of a bond.

■ INTRODUCTION
This work is the second in a series1 developing a different
approach to rationalizing and analyzing chemistry. The previous
paper began, following the work of L. C. Allen,2−5 by
considering the average electron binding energy of all electrons,
a quantity that we termed χ,̅ a generalized electronegativity.
Here, we continue our investigation of a new kind of energy
decomposition analysis based on terms that are attainable from
experimental and theoretical methods alike.
The energy partitioning that comes out of the definition of χ ̅

involves in a natural way two other terms: ω, a negative of
multielectron interactions, and VNN, a more straightforward
sum of nuclear repulsions. We will refresh the exact definition
of these terms below. An important point in our theory, that
explicit quantification of multielectron interactions can be
gained purely from accurate experimental data for small
molecules, was illustrated in the previous article. Herein, we
apply this energy partitioning analysis to bond formation in
diatomics. Using its framework, we will show how familiar
classes of bonding motifs appear as a natural consequence of
the analysis. Chemical concepts such as covalence, ionicity, and
highly correlated situations can be investigated both from
calculations and from experiment.
First, quite some background is required, and we ask the

reader to bear with us.

■ WHERE IT BEGINS: THE AVERAGE ELECTRON
BINDING ENERGY, χ ̅

The average binding energy of a collection of electrons (χ)̅ is a
property of any assembly of electrons in atoms, molecules, or
extended materials. One approximation to χ ̅ is as an average of
ionization potentials:

χ
ε

̅ =
∑

n
i i

(1)

where εi is the energy corresponding to the vertical (Franck−
Condon) emission of one electron i into vacuum, with zero
kinetic energy, and n is the total number of electrons. For
extended structures in one-, two-, or three-dimensions, χ ̅ can
similarly be obtained from the density of states (DOS).1

It is important to stress that the definition of χ ̅ does not
necessitate a “single particle picture” because any collection of
electrons in a specified electronic state collectively has an
average binding energy, which is characteristic of the system.
Significant degrees of entanglement (or correlation) of the
electrons do not change this. Estimates to χ ̅ from experiment
are possible;1 however, the interpretation of photoelectron
spectra can, for instance, be problematic when ionization arises
from strongly coupled states.6−8 As will be discussed, χ ̅ can be
approached and approximated using several levels of theory,
including one- and multideterminant self-consistent field
theories, and density functional theory. As one moves beyond
single-reference descriptions, the interpretation of χ ̅ in terms of
ionization potentials becomes approximate, but its interpreta-
tion as an inherent average of electron binding energies
remains.
χ ̅ also appears in the theoretical framework of moments of

the electron distribution, pursued by Pettifor, Burdett, and Lee,
for describing factors behind solid-state structure.9−12 Politzer,
Murray, and co-workers have investigated the average local
ionization energy, essentially a spatially distributed equivalence
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of χ,̅ on isosurfaces of constant electron density, within the
contexts of molecular reactivity,13−15 electronegativity,16 polar-
izability,17,18 and other properties.13

As we showed in our previous paper, and as L.C. Allen
suggested, the average binding energy χ ̅ is related to the well-
known idea of electronegativity. There exist, of course,
numerous definitions of electronegativity.2,16,19−34 The concept
was first conceived by Pauling, who termed it as “the power of
an atom to attract electrons to itself.” He then chose to quantify
this notion by defining it on the basis of bond dissociation
energies.19

In the first part in this series, we demonstrated how χ ̅ could
be obtained for individual atoms, molecules, and extended
systems alike. This was done using both theoretical calculations
as well as accurate experimental data. χ ̅ correlates well with
other scales of electronegativity, but only within periods of the
periodic table. χ ̅ deviates from traditional electronegativity
scales in one important aspect; as elements grow heavier, down
the periodic table, the absolute χ-̅values increase as more
electrons are bound. This is not the case for traditional
electronegativity, which focuses, in different ways, on the
valence electrons; there are advantages and disadvantages to
this definition, which we outlined before. Fortunately, this
difference in absolute values does not matter, for our analysis
focuses on relative measures, that is, Δχ.̅ In a relative setting,
Δχ ̅ values, whether computed from valence-only or all-electron
estimates, are often (but not always) similar. However, we
caution that this assumption can be qualitatively incorrect,
especially for heavier elements where a large number of “core”
levels may change their energies (in different directions) in the
course of chemical transformations.

■ AN EXPERIMENTAL AND THEORETICAL ENERGY
DECOMPOSITION ANALYSIS

The basis for the analysis that grows out of the definition of χ ̅ is
as follows: When one ignores rotational, vibrational, and
translational contributions, the total energy per electron (E/n)
of any system can be related to χ ̅ as

χ ω= ̅ + +E n V n/ ( )/NN (2)

Here, n is the total number of electrons, χ ̅ is the average
binding energy of said electrons (obtained from experiment or
theory), and VNN/n is the nuclear−nuclear repulsion energy,
per electron. VNN is a direct consequence of the relative
positions of all nuclei, that is, of molecular structure. The latter
can, of course, be obtained by, for instance, X-ray diffraction,
microwave spectroscopy, or from quantum chemical calcu-
lations. Finally, ω is a key feature of this analysis. It represents
multielectron interactions. This quantity is the only term of eq
2 that cannot be directly experimentally measured over a
reaction. Instead, as previously detailed, and as we will show
below, it can be indirectly inferred, quantitatively so, following
measurement of all other components of eq 2: ΔE, Δχ,̅ and
ΔVNN.

■ DO WE NEED ANOTHER ENERGY
DECOMPOSITION ANALYSIS?

Ever since the advent of quantum chemistry, people have tried
to analyze electronic structure through a variety of
approaches.35,36 There exist a variety of methods specifically
focused on decomposing the total energy (E), or the relative
energy change in a reaction (ΔE), which can be referred to as

energy decomposition analyses, or EDAs. A long but still not
exhaustive list includes the schemes of Kitaura and
Morokuma,37 Ziegler and Rauk,38 the Constrained Space
Orbital Variation (CSOV) method of Bagus and Illas,39,40 the
Reduced Variational Self-Consistent Field (RVS-SCF) method
of Stevens and Fink,41 the Natural Energy Decomposition
Analysis (NEDA) of Glendening and Streitwieser,42−44 in turn
based on the Natural Bond Orbital (NBO) method (which is
not an energy decomposing method),45,46 the Self-Consistent
Charge and Configuration Method for Subsystems (SCCCMS)
of Korchowiec and Uchimaru,47 the method of Mayer,48 the
Atomic Resolution of Identity approach of Mayer and Hamza,49

the symmetry-adapted perturbation theory (SAPT) meth-
od,50−52 the approaches of Vyboishchikov and Salvador,53

Frenking and co-workers,54,55 the QTAIM56 and DFT-based
Molecular Energy Decomposition Scheme of Francisco et al.,57

the DFT-based EDA by Wu, Ayers, and Zhang,58,59 the Natural
Atomic Orbital based method of Baba et al.,60,61 the steric
analysis by Liu,62 the Absolutely Localized Molecular Orbitals
(ALMO) EDA of Head-Gordon and co-workers,63,64 and the
block-localized wave function-based energy decomposition
(BLW-ED) analysis of Mo et al.65

The details of these elegant and useful approaches are not
trivial, yet they share one thing in common; they all require a
quantum mechanical calculation to approximate a wave
function (or a density), which subsequently can be analyzed.
Our χ-̅based analysis might not offer as much intricate detail (in
the number of contributing energy terms) as some of the
above-mentioned methods. However, with it we have the
option to rely on experimental data, or to intermix the use of
experimental and theoretical sources of data. One is free to
approximate the three required components, ΔE, Δχ,̅ and
ΔVNN, as best as one can, using any experimental methodology
or theoretical framework deemed most suitable. Of course, this
freedom does not absolve one from concern about the accuracy
and precision of the numbers used, be they experimental or
theoretical.
We have in this work used a hybrid approach: ΔE and ΔVNN

are experimentally determined. We thus incorporate difficult
correlation effects experimentally, while minimizing ambiguity
in the ΔVNN-term. The remaining term, Δχ,̅ capturing the
average behavior of the individual electrons, is here obtained
from molecular orbital theory calculations. As mentioned
above, below, and in our previous work, there are many other
ways of estimating this term.
Let us begin with a recap of the interpretation of χ ̅ and ω.

■ UNDERSTANDING χ ̅ AND ω BY EXPRESSING THEM
WITHIN HARTREE−FOCK, KOHN−SHAM DENSITY
FUNCTIONAL THEORY, AND MULTIREFERENCE
WAVE FUNCTIONS

To gain an appreciation for the meaning of ω, let us express the
total energy in several ways. One first and mean-field
approximation to χ ̅ is the average energy of all occupied
Hartree−Fock molecular orbitals, which by themselves, via
Koopmans’ theorem, approximate single electron vertical
ionization potentials.66 In closed-shell Hartree−Fock theory,
χH̅F is defined as
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where n is the total number of electrons, εi is here the
eigenvalue of ϕi, which is the spin−orbital of electron i, ∇2

i is

the one-electron kinetic energy operator, ∑ =A
M Z

r1
A

Ai
is the

electron−nuclear attraction operator between each electron i
and nuclei A, for M number of nuceli, and Jij and Kij are the
matrix elements of the Coulomb and exchange operators,
respectively.66 The total energy EHF within Hartree−Fock
theory can then be expressed by eq 4.

∑χ

ω

= ̅ + − −
<  

E n V J K
1
2

(2 ) .
i j

ij ijHF HF NN

(4)

ω clearly represents multiple-electron interactions, precisely
expressed in terms of the same Coulomb and Exchange
operators that enter χ ̅ HF. Importantly ω, as defined by eq 4,
includes the negative of the electron−electron repulsion and of
the positive exchange and correlation energy. This seemingly
unphysical reversal of sign of the electron−electron repulsion is
a consequence of expressing the total energy as a function of χ ̅
(eq 2), and is necessary to avoid “double counting” the
electron−electron interactions. Thus, when Δω/n is negative
over a reaction, electron−electron interactions are actually
increased, and vice versa.
The expression analogous to eq 4 in Kohn−Sham density

functional theory (which, in principle, is an exact theory)67−70

can be written such that

∫
χ

ρ ρ
δ ρ

ρ

ω

= ̅ +

− + −
δρ  
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E
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ee XC
XC

(5)

where Vee(ρ) is the classical electron−electron Coulomb
repulsion energy, EXC is the exchange-correlation energy, ρ(r)
is the electron density, and the last term is the exchange-
correlation potential.
One straightforward approach to χ ̅ within KS-DFT is to

estimate it from orbital energies computed using range-
separated DFT.71−73 In this manner, one limits the self-
interaction error inherent in DFT by compensating with exact
Hartree−Fock exchange at longer distances. This approach
typically provides good estimates to (especially) the valence
electron binding energies, which are those energies that vary
most over a chemical reaction. For this reason, and due to error
cancellations, estimates of Δχ ̅ become considerably more
reliable. In this work, we will use the LC-BLYP functional for
this purpose. The physical meaning of DFT orbital energies has
been extensively discussed,74−80 and within DFT, several other
technical approaches can be taken to approximate more
accurate single electron binding energies.75,76

Thanks to work by Ryabinkin and Staroverov,81 it is possible
to also rigorously define χ ̅ more generally without the explicit
need for orbitals:

∫ ∫χ τ υ ρ̅ = + +
| − |
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⎛
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where τL(r) is the Laplacian form of the kinetic-energy density,
υ(r) is the external potential, ρ(r) is the electron density, and
P(r,r2) is the diagonal of the two-electron reduced density
matrix, all of which can be extracted from any single- or
multireference wave function. Within this coordinate repre-
sentation, the analogous expression to eq 4 then reads as

∫χ

ω

= ̅ + −
| − |  

E V
P r r
r r

r
( , )
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2

2
2

(7)

■ BOND FORMATION
Our first article in this series included, among other things, the
analysis of the following simple exoergic reactions, from
experimental data:

→2H H2

+ →− −H e H
Table 1 shows the various energy components of these two

reactions.

Both reactions are exoergic, but the components of the total
energy combine in a very different way to give the final result of
a negative ΔE. In the first reaction, we have a positive ΔVNN/n
and a negative Δω/n, as expected. The two nearly cancel and
the negative ΔE comes primarily from the negative Δχ,̅ with a
secondary contribution from Δω/n. This is what we usually
expect of bond formation, that it is driven by a lowering of
orbital energies. The physical picture is an increase in the
average binding energy of electrons as the bond forms; we will
loosely use the terms “orbital” and “average binding energy”
interchangeably. This is to ease understanding, and is not
meant to imply that orbitals are experimental observables. They
are the result of a mean field theory, and their average energies
represent an approximation to χ.̅
By a classification scheme laid out in the previous

publication, this first reaction is “nuclear-resisted”. As the
naming implies, this means that the exothermic bond formation
process is resisted only by nuclear−nuclear repulsion (ΔVNN/n-
term in eq 2). The reaction is energetically favored both by the
lowering of orbital energies (Δχ ̅ < 0) and by multielectron
interactions (Δω < 0).
The second reaction, H + e− → H−, departs fundamentally

from this paradigm. This example of electron attachment shows
how a simple exoergic process can be favored only by
multielectron interactions (Δω < 0), while actually resisted
by orbital energies (Δχ ̅ > 0). By the classification scheme laid
out in the previous article, we refer to such reactions as
“multielectron-favored”.

Table 1. Experimental Energy Partitioning of Two Simple
Reactionsa

ΔE/n Δχ ̅ ΔVNN/n Δω/n

2H → H2 −2.396 −1.828 9.716 −10.285
H + e− → H− −0.377 6.045 0.000 −6.422

aAll energies are given in eV e−1.
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The reader will note that the “favored” and “resisted” suffixes
do not relate to the exo- or endoenergetic character of the
reaction. So H2 formation and electron attachment to H are
both exothermic, while the first is termed nuclear-resisted and
the second multielectron-favored. The “favored” and “resisted”
labels refer only to the single factor (among Δχ,̅ ΔVNN, and
Δω) that differs, going against the other two. A reason for this
focus will emerge in time.
We will demonstrate that both the nuclear and the

multielectron typologies both resurface when studying bond
making and breaking in a range of diatomics. It will emerge that
for reactions classified as nuclear-resisted, we can use traditional
electronegativity arguments (here reinterpreted as the average
electron binding energy) to rationalize energetic preferences,
whereas for multielectron-favored reactions such quick and
intuitive arguments will inevitably fail us. In one way, the
border between the two represents a sort of limit, a limit that
will help us in an effort to assign a measure to the chemical
concepts of “covalence” and “ionicity”.
The obvious path ahead takes us to the homonuclear

diatomics, which include bonds of very different strength and
nature. Let us begin with an in-depth analysis of one of the
more unusual cases, the weak bond of Li2.

■ AN EXAMPLE: DILITHIUM, Li2
The lithium diatomic is, of course, real, albeit not very stable
thermodynamically, nor persistent kinetically. The Li−Li
distance in Li2 has been determined as 2.67 Å, which tells us
that the nuclear repulsion energy change in 2Li → Li2 is
relatively small, +8.08 eV e−1 (Figure 1). The heat of formation

(ΔHf
0) of atomic Li and Li2 has been measured to be 1.65 and

2.24 eV, respectively. The reaction 2Li → Li2 is, in other words,
exothermic by 1.064 eV. The vibrational contribution to the
total energy, ΔEZPE, is negligible, ∼22 meV, making our best
estimate of the bonding energy, ΔE = −1.064 − 0.022 = −1.09
eV for 2Li → Li2. We can use experimental electron binding
energies, and calculate χ ̅ for Li using eq 1, χ ̅ = (2* − 55.35 +
(−5.39))/3 = −38.70 eV e−1. However, because experimental
data on Li2 are scarce, we turn instead to quantum mechanical
calculations. In place of photoelectron spectroscopy measure-
ments, we apply LC-DFT calculations on the 2Li → Li2
reaction, and predict Δχ ̅ to be +0.54 eV e−1. This, in turn,
allows the calculation of Δω/n = −8.80 eV e−1, and Δ(VNN +
ω)/n = −0.71 eV e−1, via eq 2.
The positive value of Δχ ̅ for the formation of such a simple

diatomic, in an exoergic reaction, should raise an eyebrow. The
unexpected increase in Δχ ̅ in the course of the 2Li → Li2
reaction can be traced to the 1σg and 2σg molecular orbitals,
which, upon formation, increase in energy relative to the 1s and
2s atomic orbitals of Li. This effect was first noted by Harrison
and Lawson.82 Whereas the accuracy of DFT functionals in
estimating χ ̅ is quite good for larger systems, it is less so for the
light atoms H and Li. However, this “anomalous” orbital effect
cannot be attributed to DFT’s inherent problem of self-
interaction error, because a near identical value for the 2Li →
Li2 reaction is obtained also with Hartree−Fock theory (+0.58
eV e−1). One hand-wavy rationalization for this effect in Li2 is
that exchange (same-spin) repulsion occurs due to overlap of s-
orbitals of different principal quantum number (different shell),
positioned on adjacent atoms.
So what holds Li2 together, if Δχ ̅ is positive? It is Δω/n, the

change in multielectron interactions, whose magnitude is such
(it is negative) that it exceeds ΔVNN/n by more than the rise in
Δχ.̅ 2Li → Li2 classifies as a multielectron-favored reaction, a
very different situation in forming a bond from H2, and one
resembling electron attachment to H.
We have seen how H2 formation is driven by the increase in

electron binding energy, while Li2 bonding is determined by
multielectron interactions. What about the other homonuclear
diatomics?

Figure 1. In the exothermic formation of Li2 from Li atoms, the
average electron binding energy is increased.

Table 2. Examples of Homonuclear Diatomic Bond Formationa

reactionb dexp
c [Å] n [e] ΔEc [eV] ΔE/n [eV e−1] Δχ ̅

d [eV e−1] ΔVNN/n
c [eV e−1] Δω/n [eV e−1] Δ(VNN + ω)/n [eV e−1]

22H → H2 0.741 2 −4.792 −2.396 −1.828d +9.716 −10.285 −0.568
22Li →Li2 2.673 6 −1.09 −0.181 +0.54 +8.08 −8.80 −0.72
2Be → Be2 2.460 8 −0.11e −0.014 −0.10 +11.71 −11.62 +0.09
22B → 3B2 1.590 10 −3.07 −0.307 −0.59 +22.64 −22.35 +0.29
23C → C2 1.243 12 −6.29 −0.524 −1.08 +34.75 −34.20 +0.56
24N → N2 1.098 14 −9.94 −0.710 −2.35 +45.90 −44.26 +1.64
23O → 3O2 1.208 16 −5.26 −0.329 −1.70 +47.68 −46.32 +1.37
22F → F2 1.412 18 −1.70 −0.095 −0.80 +45.89 −45.18 +0.71
22Na → Na2 3.079 22 −1.81 −0.035 +0.60 +25.72 −26.35 −0.63
22Al → 3Al2 2.466 26 −1.81 −0.070 −0.09 +37.96 −37.94 +0.02
22Cl → Cl2 1.987 34 −2.55 −0.075 −0.43 +61.60 −61.25 +0.35
22Cu → Cu2 2.220 58 −2.08 −0.036 +0.14 +94.06 −94.21 −0.18
22I → I2 2.666 106 −1.58 −0.015 −0.19 +143.13 −142.95 +0.18
22Cs → Cs2 4.470 110 −0.48 −0.004 +0.28 +88.59 −88.87 −0.29

aThe bond energy is partitioned from an intermixed use of experimental and theoretical data. bThe spin multiplicity is singlet, unless otherwise
specified. cExperimental data from NIST Chemistry WebBook. ΔE ≈ ΔH0 − EZPE, where EZPE = 1/2h∑νi.

dFrom LC-BLYP/aug-cc-pVQZ
calculations, except for H and H2, where the experimental values of χH̅ = −13.598 eV and χH̅2 = −15.426 eV were used. eΔE ≈ ΔH0 as EZPE can be
presumed small, and no vibrational data are available for Be2.
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■ HOMONUCLEAR DIATOMICS

With the exception of Li2 and other “metallogenic” (we will
define this term in time) dimers such as Na2, Cs2, and Cu2, the
formation of all investigated homonuclear diatomics from
separate ground state atoms follows the H2 paradigm (Table 2)
in that they may all be classified as nuclear-resisted. The values
of ΔVNN/n and Δω/n are uniformly large and largely canceling.
Δχ ̅ has the same sign as ΔE, and we can therefore argue that
our favorite conceptual tool, the orbital, here averaged in the
form of χ ̅, governs these reactions’ exothermicity. The
combined effect of the binding energy increase or orbital
stabilization (Δχ)̅ can, however, in some cases far exceed ΔE/n.
The total energy change upon nuclear-resisted bond

formation should be understood as a balance between a
decrease in χ ̅ (the stabilization of orbitals) and the repulsive
interactions of approaching nuclei, which in turn cause an
increase in electron−electron interactions.
Close to one extreme, we have the formation of F2, where the

increased average electron binding energy Δχ is almost equal in
magnitude and opposite in sign to the term Δ(VNN + ω)/n.

This signifies that the F2 bond, albeit governed by the Δχ term,
also contains significant multielectron-contributions (the
interpretation of the Δ(VNN + ω)/n-term will be addressed
below). This trend is in qualitative agreement with the
reasoning of Shaik, Danovich, Wu, and Hiberty, who have
pointed out in their analysis of charge-shift bonding that
bonding with “excessive exchange repulsion is typical to
electronegative and lone-pair-rich atoms.”83 One curiosity is
that the nuclear−nuclear repulsion energies per electron, VNN/
n, in N2 and F2 are almost identical, only differing by 9 meV
e−1. Thus, as nitrogen is transmuted into fluorine, the longer
bond length of F2 compensates nearly perfectly for fluorine’s
higher nuclear charge.

■ POLAR BONDS

In Table 3 we see a variety of “polar” heteronuclear diatomic
molecules. When they are analyzed with our energy
partitioning, these diatomics also partition into two categories,
nuclear-resisted and multielectron-favored. In both groups,
there are examples of quite polar (as measured by values of

Table 3. Examples of Heteroatomic Diatomic Bond Formationa

reactionb
dexp

c

[Å]
dipolec

[D] n [e] ΔEc [eV]
ΔE/n

[eV e−1]
Δχ ̅

d

[eV e−1]
ΔVNN/n

c

[eV e−1]
Δω/n

[eV e−1]
Δ(VNN + ω)/n

[eV e−1]

Nuclear-Resisted Bonds, Δχ ̅ < 0
4N + 3O → 2NO 1.151 0.153 15 −6.66 −0.444 −2.08 +46.72 −45.08 +1.64
3C + 3O → CO 1.128 0.112 14 −11.29 −0.806 −2.02 +43.76 −42.54 +1.22
3C + 2F → 2CF 1.272 0.7d 15 −5.69 −0.379 −1.68 +40.76 −39.46 +1.30
2B + 2F → BF 1.263 1.02f 14 −7.91 −0.565 −1.62 +36.66 −35.61 +1.05
4N + 3C → 2CN 1.172 1.45 13 −7.95 −0.611 −1.33 +39.70 −38.98 +0.72
4N + 2F → 3NF 1.317 0.07d 16 −3.21 −0.201 −1.24 +43.05 −42.02 +1.04
2F + 3O → 2OF 1.32e 0.03d 17 −2.31e −0.136 −1.03 +45.14 −44.24 +0.90
2F + 2Cl → ClF 1.628 0.88 26 −2.65 −0.102 −0.71 +52.04 −51.43 +0.61
2B + 2H → BH 1.232 1.2 6 −3.62 −0.604 −0.64 +9.74 −9.71 +0.03
3C + 2H → 2CH 1.120 1.46 7 −3.71 −0.530 −0.61 +11.02 −10.94 +0.08
2B + 4N → 3BN 1.281 2.4d 12 −5.85 −0.488 −0.43 +32.79 −32.85 −0.06
2B + 3O → 2BO 1.205 2.6d 13 −8.27 −0.636 −0.08 +36.78 −37.35 −0.56
Multielectron-Favored Bonds, Δχ ̅ > 0
2Al + 2H → AlH 1.648 0.08d 14 −3.10 −0.221 +0.10 +8.11 −8.44 −0.32
3Si + 3S → SiS 1.929 2.1d 30 −6.48 −0.216 +0.22 +55.73 −56.17 −0.44
2H + 2Cl → HCl 1.274 1.109 18 −4.66 −0.259 +0.28 +10.67 −11.21 −0.54
2H + 2F → HF 0.917 1.826 10 −6.17 −0.617 +0.42 +14.14 −15.18 −1.04
2Na + 2H → NaH 1.887 6.6d 12 −2.16 −0.180 +0.54 +6.99 −7.72 −0.72
Be + 2F → 2BeF 1.361 1.2d 13 −6.02 −0.463 +0.55 +29.30 −30.31 −1.01
2Al + 3S → 2AlS 2.029 4.4d 29 −3.86 −0.133 +0.62 +50.90 −51.65 −0.75
2Li + 2H → LiH 1.596 5.882 4 −2.58 −0.646 +0.93 +6.80 −8.38 −1.57
2Al + 3O → 2AlO 1.618 4.9d 21 −5.37 −0.256 +1.00 +44.08 −45.33 −1.25
2Cs + 2Cl → CsCl 2.906 10.36 72 −4.55 −0.063 +1.23 +64.34 −65.63 −1.29
2Cs + 2I → CsI 3.315 11.6 108 −3.50 −0.032 +1.65 +117.24 −118.93 −1.68
2K + 2Br → KBr 2.821 10.6 54 −3.96 −0.073 +2.56 +62.86 −65.50 −2.64
Be + 3O → BeO 1.331 7.0d 12 −4.62 −0.385 +2.68 +28.85 −31.92 −3.06
2Li + 2F → LiF 1.564 6.284 12 −6.06 −0.505 +4.03 +20.72 −25.25 −4.54
2Na + 2F → NaF 1.926 8.123 20 −4.98 −0.249 +3.01 +37.01 −40.27 −3.26
2Na + 2Cl → NaCl 2.361 8.971 28 −4.27 −0.153 +2.21 +40.74 −43.10 −2.36
2H + e− → H− 0.0 0.0 2 −0.754 −0.377 +6.045b 0.00 −6.422 −6.42

aThe bond energy is partitioned from an intermixed use of experimental and theoretical data. bThe spin multiplicity is singlet, unless otherwise
specified. cExperimental data from NIST Chemistry WebBook. ΔE ≈ ΔH0 − EZPE, where EZPE = 1/2h∑νi.

dFrom LC-BLYP/aug-cc-pVQZ
calculations, except for H, where the experimental value χ ̅ = −13.598 eV was used. eBecause the reported bond length of 1.32 Å for OF is not reliable
and the heat of formation has not been reported, we calculated both at the CBS-QB3 level.86 A bond distance of 1.351 Å resulted, which does not
affect any conclusions. fThe dipole moment of 1.02 D for BF (with the negative end on boron) is from ab initio calculations.84 The unsigned NIST
experimental value of 0.5 D is deemed unreliable.85
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dipole moment) molecules. Yet by and large the multielectron-
favored category includes the “more polar” systems, including
LiH, HF, BeF, BeO, NaCl, and LiF, etc. These are all examples
of diatomics that actually aggregate to form ionic solids or H-
bonded networks in the condensed phase. Nuclear-resisted
bonds, in contrast, are found, in general in “less polar”
molecules. We note that part of the exceptions to this rule
include all of those systems with “reversed polarity”
(contrasting their dipole moments with what might have
been expected from classical Pauling electronegativity argu-
ments), BF, CO, NO, and CF. We will soon see that there is
something special about one of the other exceptions with a
relatively large dipole moment, BO; it inhabits a small
intermediate region where both Δχ ̅ and n−1Δ(VNN + ω) are
negative.
There is a method to our madness in including H + e → H−

in this table; this will be explained in time.

■ TRYING TO UNDERSTAND POLARITY
Is it surprising that both bond types, nuclear-resisted and
multielectron-favored, arise in polar molecules, and that the
more polar ones are multielectron-favored? Let us try to get a
feeling for what happens in polar bond formation, by looking at
two heteronuclear molecules, LiF and CO, one quite polar, one
much less so. Consider forming the two from neutral atoms,
but now in stages, starting with initial electron transfer between
atoms, followed by recombination, as in eq 8:

+ → + →+ −A B A B AB (8)

As far as the energy changes go, we know them, intuitively.
Bond formation from the neutral is exothermic, as is electron
attachment. It takes energy to ionize any atom, and it always
takes more energy than one obtains by electron attachment to
its bonding partner. So in diatomic bond formation, the second
step, recombination of the ions, is highly exothermic, enough to
overcome the difference between the ionization potential and
the electron affinity of the first steps.
We summarize the changes in Δχ ̅ and Δω/n for the

elementary steps in the first stage of the reaction taken apart in
this way, in Table 4. Δχ ̅ is always positive for electron
attachment, and negative for ionization. Just as one would
expect, orbital energies go up in the former, down in the latter.

Δω/n behaves in the opposite way; it is negative for electron
attachment, positive for ionization. ΔVNN/n = 0 in any
ionization, so Δ(VNN + ω)/n = Δω/n. The changes in
multielectron interactions are greater in magnitude (if they
were not there would never be a positive electron affinity) than
Δχ.̅ This is the reason why all of these electron attachment/
detachment steps are multielectron-favored/-resisted. A large
Δω/n term is intimately associated with electron transfer,
which is why it will soon figure importantly in a measure of
bond character. Clearly the formation of ions, exothermic or
endothermic, is multielectron-resisted or -favored.
Note that in Table 4 we also have included the electron

attachments/detachments “the wrong way around”, that is, Li
→ Li− and F → F+. This is because we expect to learn
something from putting the molecule together in an unconven-
tional way.
Continuing with the second step in eq 8 when A+ and B− are

brought together, ΔVNN/n is turned on, so to speak. This term
is always large and positive, resisting bonding. Table 5 shows
the energy components for bond formation in this ionic
recombination step. It includes, for comparison, the partition-
ing for assembly of the diatomic from neutral atoms (this was
already shown in Table 3). In moving between Tables 4 and 5,
it is important to recall that the energy components are per
electron, that is, 3 electrons for Li → Li+ + e−, 10 electrons for
F + e− → F−, and 12 electrons for Li + F → LiF.
We also feel it necessary to reiterate our convention for

classifying reactions as -favored or -resisted in a classification
does not imply that the overall reaction is exo- or endothermic.
It denotes the single component of the three parts of the energy
that goes in a direction opposite to the other two. So
exothermic C + O → CO is nuclear-resisted (in fact orbitals
and multielectron terms overcoming nuclear repulsion), while
endothermic Li + F → Li+ + F− at infinite separation is
multielectron-favored (the destabilizing orbital term overcomes
the stabilizing multielectron factor).
The classification of the second stage in eq 8, that is, A+ + B−

→ AB, will depend greatly on the nature of A and B. Table 5
explains by example; in reactions that begin from an
“unfavorable” polarity, such as Li− + F+ → LiF, a large degree
of charge transfer should be expected in this last step of bond
formation. Just as we noted for electron attachment, this is
reflected by the multielectron-favored reaction classification. If
instead a polar species, such as LiF, is formed from moieties
that are already ionized in the “right” manner, little charge
transfer will occur upon bond formation. The ΔVNN term,
always positive when atoms come together, then dominates.
The net outcome is a situation analogous to the formation of
more covalent bonds, a nuclear-resisted process.

Table 4. Typical Values for the Hypothetical First Step in
Scheme 1a

ΔE/nb Δχ ̅
c Δω/n classification

C → C+ + e− +1.88 −9.56 +11.44 m.e.-resisted
C + e− → C−a −0.17 +7.36 −7.53 m.e.-favored
O → O+ + e− +1.70 −12.63 +14.33 m.e.-resisted
O + e− → O−a −0.15 +10.52 −10.67 m.e.-favored
Li → Li+ + e− +1.80 −4.09 +5.89 m.e.-resisted
Li + e− → Li−a −0.22 +3.42 −3.58 m.e.-favored
F → F+ + e− +1.94 −14.41 +16.35 m.e.-resisted
F+ e− → F−a −0.34 +12.02 −12.36 m.e.-favored
Li + F → Li+ + F− +1.99 +8.99 −8.83 m.e.-favored

aAs a general rule, electron attachment reactions are always
multielectron-favored. Either of the previously defined1 classifications
“binding” or “multielectron” is strictly applicable here, because ΔVNN/
n = 0. All energies are in eV e−1. “Multielectron” is here abbreviated by
m.e. bExperimental data from NIST Chemistry WebBook, except
electron affinities, which are calculated at the G4 level. cFrom LC-
BLYP/aug-cc-pVQZ calculations.

Scheme 1. Formation of Any Chemical Bond Dissected into
Two Hypothetical Electron Attachment and Detachment
Steps, Followed by a Recombination of the Resulting Ions
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If we consider a less polar bond, such as that in CO (as
implied by its minute dipole moment), then the creation of the
bond from either preionized options will require substantial
charge transfer, and both such ionic reactions classify as
multielectron favored (Table 5). Scheme 1 summarizes the
character of the various stages in this way of looking at the
bond-forming reaction. The dissection we made (first electron
transfer then recombine ions) was meant to demonstrate the
connection between charge transfer and ω. We must stress that
in a real bond-formation process all “steps” will, of course,
occur simultaneously.
Clearly the multielectron classification is related to charge

transfer. We see it in isolated electron transfer, either ionization
or attachment. Yet we also see it dominating the energy
partitioning in the formation of polar bonds. How can we
exploit this connection to gain further insight into chemical
bonding?

■ A REASON FOR USING THE COMPOSITE Δ(VNN +
ω)/n

We postulate that the multielectron-favored bonds, where Δω/
n is the only negative term in the energy expression (eq 2),
describe situations where bonds are formed fundamentally due
to intramolecular charge transfer. The reasoning is simple; for
electron−electron interactions to change, charges must move.
We say nothing of the net direction, distribution, or fluctuation
in time of this charge, only that a negative Δω/n-term implies a
favorable degree of electron transfer within the molecule upon
bond formation.
Δω is negative in both nuclear-resisted and multielectron-

favored bonds. This is because the largest part of Δω arises as
an effective cancellation to ΔVNN, that is, as a simple
consequence of electrons in atoms or molecules being brought
closer together, not due to subtleties of bonding per se. To
quantify how much of Δω is not a simple consequence of
canceling the nuclear−nuclear repulsion, described by a positive
ΔVNN, it is necessary to consider the sum Δ(VNN + ω)/n, and
not just Δω. Δ(VNN + ω)/n describes how well changing
nuclear−nuclear repulsions, ΔVNN, are screened by changing
multielectron interactions, Δω.

■ CONNECTING COVALENCE TO Δχ ̅
In the chemical community, a covalent bond is thought of as a
bond in which electrons are shared about equally in bond
formation. H2 serves as a paradigm for this kind of bonding,
and so does the familiar picture of two orbitals interacting, one
going down, one going up in energy. We are well aware of the
historical emphasis of the role of the Heitler−London wave
function in describing covalent bonding, but wish to focus on
energy changes in bond formation. People think of a covalent

bond as one governed by the stabilization of orbitals, and the
electrons that occupy them. We have just such a measure of the
stabilization of electrons in their average binding energy, χ,̅
from theory or experiment.
Because Δχ ̅ describes the net change in the binding energy of

electrons (or the net stabilization of orbitals), the connection
between “covalency” and eq 2 becomes clearer; the more Δχ ̅
contributes to the bond formation, the more covalent is the
bond. The other term in the energy expression, Δ(VNN + ω)/n,
describes the multielectron (or, as we have argued, the charge
transfer) character of a bond. As we shall see, large
multielectron (i.e., Δ(VNN + ω)/n-dominated) character will
be found in what we consider ionic bonds, such as NaCl, and in
more “metallogenic” bonds, such as Na2, as well as in highly
correlated bonds, such as F2.
Let us see how these ideas of Δ(VNN + ω)/n characterizing

electron transfer, Δχ ̅ covalence, can be transformed into a more
quantitative measure.

■ SETTING UP CRITERIA FOR BOND CHARACTER

Suppose we use the ratio Δχ/̅[ΔE/n] to measure how
important the Δχ-̅term is in the bond energy, ΔE/n. Similarly,
let us take the [Δ(VNN + ω)/n]/[ΔE/n] ratio, also
dimensionless, as an expression of how important the Δ(VNN
+ ω) /n term is. The difference between the two ratios, here
denoted by Q in eq 9, we posit is a measure of how important
the first term, which we associate with covalence, is with respect
to the second, which relates to intramolecular charge transfer,
or multielectron interactions.
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Q, with a little bit of algebra, is the difference divided by the
sum of the two terms Δχ ̅ and Δ(VNN + ω)/n. Q can also be
expressed as a function of the Δχ/̅[Δ(VNN + ω)/n] ratio K.
From the last of the several expressions for Q, we can see that
to determine Q one only needs ΔE and Δχ.̅ Not having to
evaluate ΔVNN explicitly is advantageous, as this term blows up
in a large system, or in a periodic calculation.

Table 5. Energy Partitioning Components for the Hypothetical Second Step in Scheme 1a

ΔE/nb Δχ ̅
c Δ(VNN + ω)/n ΔVNN/n

b Δω/n classification

Li+ + F− → LiF −0.67 −4.96 +4.29 +20.72 −16.42 nuclear-resisted
Li− + F+ → LiF −1.90 +28.4 −30.31 +20.72 −51.03 multielectron-favored
Li + F → LiF −0.505 +4.03 −4.54 +20.72 −25.25 multielectron-favored
C+ + O− → CO −1.52 +4.94 −6.46 +43.76 −50.22 multielectron-favored
C− + O+ → CO −1.69 +14.40 −16.09 +43.76 −59.85 multielectron-favored
C + O → CO −0.806 −2.02 +1.22 +43.76 −42.54 nuclear-resisted

a“Appropriately” preionized species will not engage in charge transfer upon combination, whereas unfavorably ionized species will. This is reflected
by the sign of Δχ,̅ and by the reaction classification. All energies are in eV e−1. bExperimental data from NIST Chemistry WebBook combined with G4
level calculations. cFrom LC-BLYP/aug-cc-pVQZ calculations.
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Q is uniquely defined, but arbitrary. There are alternative
measures of covalence that can be constructed using the
different terms of eq 2. Whereas Q is unbound, such indices
could, for instance, be constructed to range between 0−100%.
Aside from serving the purpose of connecting the time-honored
and intuitively engrained concept of bond covalency as a
fraction or percentage, downsides emerge for such scales. This
is explored in the Supporting Information.

■ GETTING A FEELING FOR Q
Whereas we recognize that the nature of chemical bonding in
homonuclear diatomics can be different (contrast Li2, H2, F2),
we might nevertheless imagine them all as inherently
“covalent”. As Figure 2 shows, things are not so simple.

Homonuclear diatomics exhibit a range of Q between −10 and
+16, due to great differences in the nature of these bonds. We
omit here many weak bonds and weak attractive dispersion
force minima; the nature of these “enlarges” the Q space, and
they will be discussed separately. Figure 2 also shows
heteronuclear diatomic bonds, illustrating that these fill up a
space in Q similar to that of the homonuclear ones. However,
one notices immediately that the most polar heteronuclear
bonds (as measured, for instance, by any classical electro-
negativity scale or by dipole moment) have negative Q. These
are the multielectron-favored bonds, with a large negative
Δ(VNN + ω)/n dominating Δχ.̅
How can we interpret this spread in Q? Clearly Q leads us to

a differentiation, an important one, of bonds we normally (and
intrinsically) consider as covalent.
For Q = 1, ΔE = Δχ ̅ (eq 9), that is, Δ(VNN + ω)/n, electron

transfer, is entirely unimportant. In contrast, where Q = −1, the
bond is completely dominated by the Δ(VNN + ω)/n-term.
Here, various multielectron interactions govern the bond. We
see from Figure 2 that only very few bonds fall into the range

−1 < Q < 1, specifically only BN (Q = 0.7), H2 (Q = 0.5), and
BO (Q = −0.8). H2 is closest to the special point of Q = 0,
where Δχ ̅ = Δ(VNN + ω)/n. It can be interpreted as a crossover
between “covalent” and “ionic”.
Table 6 and Scheme 2 summarize a set of different regimes in

Q, and their interpretation, which will be further justified below.

Situations where 1 < Q < −1 describe in different ways how
multielectron interactions become more important, acting
either with or against the bond’s formation.
How can Q be greater than 1 or less than −1? From eq 9, we

see that this happens for negative K; that is, Δχ ̅ and Δ(VNN +
ω)/n must be of opposite sign. When the terms are of opposite
signs, their relative magnitude determines Q: If |Δχ|̅ > |Δ(VNN
+ ω)/n|, then Q will be bigger than 1, while if |Δχ|̅ < |Δ(VNN +
ω)/n|, Q will be less than −1. The regimes where Q is more
than 1, and less than −1, happen only near K = −1 (Scheme 2).
Q > 1 for all K more negative than −1, and Q < −1 for the
restricted region −1 < K < 0. Note that situations with Q =
exactly −1, 0, +1 by definition involve rare circumstances of
either Δχ ̅ or Δ(VNN + ω)/n equal to zero, or equal to each
other (Table 6).
If we have bond formation-disfavoring multielectron

contributions, as described by a positive Δ(VNN + ω)/n-term,
we move toward more positive Q (defining eq 9; note ΔE is
negative). As we suspect from looking in detail at Figure 2, this
situation appears for bonds where “electron correlation” plays
an increasing role, such as in O2 and F2. We will soon make
more precise the correlation attribute. In the other case, where
Q < −1, the Δ(VNN + ω)/n-term is instead negative (and larger
in magnitude than ΔE/n). This we have already seen is
indicative of polar and ionic bonds, and for homonuclear bonds
a more special situation exemplified by Li2, and other
metallogenic diatomics. What we mean by the metallogenic

Figure 2. Selected diatomic bonds within the range −7 < Q < 16. (A)
Homonuclear diatomic bonds, and (B) heteronuclear diatomic bonds.

Table 6. Criteria for Bond Character and Interpretationa

Δχ ̅ Δ(VNN + ω)/n Q interpretation

− + Q > 1 correlated, electrostatic, dispersion
− 0 Q = 1 covalent
−b −b Q = 0 mixed
0 − Q = −1 ionic
+ − Q < −1 polar, ionic, metallogenic

aThroughout bond formation is exothermic; that is, ΔE is negative.
bΔχ ̅ = Δ(VNN + ω)/n.

Scheme 2. Relationship between Q and K Shown Together
with the Type of Bonds Found in Different Regionsa

aRegions where Q > 1 and Q < −1 are shaded.
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neologism (used also in Table 6 and Scheme 2), to anticipate a
more detailed discussion, is elements that have low ionization
potentials, and that upon building up of a cluster, M → M2 →
M3 → M → ...Mn, undergo an insulator to metal transition.
Q by itself is not enough to clearly differentiate bond types.

Another dimension is hinted at, if informative partitioning of
the great variety of bond types we know is to be attained. In the
spirit of remaining with experimentally measured variables, we
next consider the total energy change in a reaction.

■ Q AND ΔE
We plot in Figure 3 Q for 50 diatomic bonds (including H−)
against the most important measure we have of a chemical

bond, the dissociation energy, ΔE. Now a better separation is
achieved of the variety of bonds one finds in chemistry. We
discuss the different regions of this diagram in detail.

■ “COVALENT” BONDS
Typical strong bonds are associated with covalence, positive Q,
but not necessarily that close to Q = 1. Nor should we expect

that Q = 1 is a singular point with Δ(VNN + ω)/n = 0. The
bond closest to Q = 1 is actually a heteronuclear one, BH (Q =
1.1). In this simple case, the near unity Q can be understood
from the bonding σu orbital, which is constructed by a near
perfect overlap of the 1s1 of H with one lobe of the 2p1 on B.
The good overlap, along with a small number of interacting
valence electrons, a feature that minimizes the importance of
same-spin repulsion, merits only minor deformation of formal
atomic orbitals (which would translate into intramolecular
charge transfer and thus a Δ(VNN + ω)/n). Similar arguments
of good overlap and minor exchange energy contributions can
be made to explain the predicted covalency (Q near 1) of bonds
in species such as CH, BN, H2, and Al2

■ POLAR AND IONIC BONDS

Remaining with strong bonds, a high magnitude of ΔE, we find
highly polar and ionic diatomics in the bottom center domain
in Figure 3, where they take on negative values of Q. Examples
include HF (Q = −2.4), NaH (Q = −7.0), LiF (Q = −17.0),
NaCl (Q = −29.9), CsCl (Q = −39.8), KBr (Q = −70.9), and
CsI (Q = −103.0). In strongly ionic bonds, the intramolecular
electron transfer character captured by Q can be attributed to
single-electron charge transfer. We will return to the specific
example of NaCl below.

■ “CORRELATED” BONDS

As we go to positive values in Q, while remaining in the
relatively high ΔE region, we encounter species characterized
by increasing degrees of “electron correlation”. What do we
mean by “correlation”? Within quantum chemistry, correlation
energy has a specific meaning. It is usually defined as the
difference between the exact energy and that obtained from a
single-reference Hartree−Fock calculation extrapolated to the
basis set limit. Such a calculations treats an important part of all
multielectron interactions, the same-spin (i.e., exchange or
Pauli) repulsion. Higher order electron interaction effects are
left untreated. The definition of correlation energy is very
theory-centric; there is no clear experimental measure of the
quantity.
To make matters worse, correlation energy is not the same as

electron correlation, which relates to the physical picture of
correlated movement of electrons due to all of their different
interactions. One way out of a nightmare of arguably
confusingly similar definitions is our usage of the word
“multielectron”, which includes all types of interactions
between electrons (here quantified by ω).
In what follows, “correlation energy” refers to the missing

Hartree−Fock energy. This is distinct from “electron
correlation”, “correlation”, or “correlated bonds”, which all
refer to the physical picture of electrons moving in correlated
manners due to any number of multielectron interactions.
As we have learned from the special case of F2,

homonuclearity or a good Lewis structure is not a guarantee
that a simple quantum mechanical calculation (i.e., Hartree−
Fock) will give bonding. One needs to account for correlation
explicitly and carefully. Even bonds thought to be “normal”,
such as the strong triple bond of N2, are substantially
“correlated”; 50% of the bond energy of N2 is due to
correlation effects beyond the Hartree−Fock level.87

Figure 4 plots the missing correlation energy (measured as %
of the bond energy) versus Q for selected diatomics. We will
discuss several specific trends in detail below; what is clear from

Figure 3. The Q-scale plotted against the bond dissociation energy ΔE
in a range of diatomics reveals familiar groups of chemical interactions.
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Figure 4 is that large Q bonds are strongly correlated. Why
should this be so? It is because in our analysis ω summarizes all
multielectron interactions. These include many useful and
familiar divisions, such as exchange, static, and dynamic
correlation, as well as pure electrostatics. For this reason, we
can expect a linear relationship like that shown in Figure 4
when the reasons behind a trend in chemical bonding lie
beyond a Hartree−Fock description.
Several examples of “correlated” diatomics appear in Figure

3, for example, C2 (Q = 3.1) and O2 (Q = 9.3). F2, the
archetypical charge-shift bond,83 attains the high value of Q =
16.0. We do not include it in Figure 4; if we did, its correlation
energy would exceed 100% of the bond energy; that is, there is
no bond in F2 at the Hartree−Fock limit.88−90

In Figure 3, the bond in F2 borders with another region
inhabited by diatomic aggregates characterized by fluctuating
interactions, the much weaker dispersion interactions.

■ WEAK DIATOMIC BONDS OR DISPERSION FORCE
ASSOCIATIONS

We note first that there are larger uncertainties in the Q values
of dispersion-bound associations because of the way Q is
defined, with ΔE in the denominator. At the top of the diagram,
we have attractive dispersion interactions as in the dimers He2
(Q ≈ 29), Ar2 (Q ≈ 37), Kr2 (Q ≈ 57), Xe2 (Q ≈ 57), and Ne2
(Q ≈ 79). The Q values of these extremely weakly bound
(μeV) interactions are especially uncertain due to technical
difficulties in accurately calculating Δχ.̅ Even though Q values
for the noble gas dimers vary with basis set, Q is consistently
found to be high and positive (>20). Dispersion interactions
arise due to fluctuations in the electron density, and represent
one form of intramolecular (over time, isotropic) charge
transfer.

■ METALLOGENIC BONDS
More interesting are the negative Q, low ΔE, species Li2 (Q =
−6.9), Na2 (Q = −35.2), Cs2 (Q = −131.2), and H− (Q =
−33.1). These have weakly bound outmost electrons, and that
is a feature we also associate with metallic character. Also, as
these aggregate into larger clusters (not yet studied by us), the
clusters quickly become metallic. We expect diatomics of the
transition series to fall into this region as well. Indeed, Cu2 (Q =
−9.0), one of few transition metal dimers described reasonably
accurately with DFT methods,91 does tell the same story. We
note that some diatomics, AlH, LiH, NaH, are close to the
metallogenic region. Indeed there are calculations that suggest
that under pressure LiH undergoes an insulator-to-metal

transition.92 The relationship between Q, low ΔE, and
pressure-induced metallicity remains to be explored.

■ ELECTROSTATIC INTERACTIONS

Finally, purely electrostatic interactions, that is, strong
interactions formed without preceding intramolecular electron
transfer (like those we discussed earlier), attain very large and
positive values of Q and reside in the upper left corner of Figure
3. One telling example is found in the NaCl diatomic.
The diatomic NaCl, of course unstable to assembly into an

NaCl crystal, is nevertheless relatively strongly bound, and has
an internuclear separation smaller than that in the crystal. The
process of NaCl formation has a low Q-value of −29.9. As
shown earlier in the context of Table 3, this is a multielectron
favored process, Δχ ̅ = +2.2 eV e−1, and we therefore expect it to
be governed by some form of intramolecular electron transfer.
The low Q-value and the classification as multielectron-favored
support a well-known interpretation of the Na + Cl potential
energy surface, starting out at long separations with a covalent
MO formulation, followed by a quick crossover to a mainly
ionic potential energy curve.93,94 One then has single-electron
charge transfer, leaving us with the Na+Cl− description.
What if we instead consider the bonding event in water

solution, where one reasonable pathway to NaCl is the union of
solvated Na+ and Cl− ions? We can approximate this process
computationally simplistically, by treating the effect of a water
environment by an implicit solvation model, described in the
Methodology. When we do so, we find that this bond
formation, in contrast to the gas-phase process, is nuclear-
resisted (Δχ ̅ = −5.6 eV e−1). Of course, the nuclear-resisted
classification implies that intramolecular electron transfer
should not be governing. This is expected because in this
situation the components Na+ and Cl− are already “pre-
polarized” and no electron transfer is required to form the
preferred state. To reflect this change in reference from the gas
phase into the liquid phase, the Q-value rises significantly to
+350!
If we consider the union of Na+ and Cl− in the gas phase (i.e.,

without a stabilizing chemical environment), then the Q value is
lowered, but remains high, at +60. Both of these high values of
Q are far greater than what is reasonable for covalent bonds.
The strength of the interaction (counted per electron) also
rules out dispersion interactions. This leaves us with Coulomb
interactions between oppositely charged ions, interactions that
also are a form of multielectron interactions. This exemplifies
how we can arrive at the same Na+Cl− description, but from
different starting points, and in different chemical environ-
ments. In this analysis, the nature of chemical bonds is not
static. Instead their nature is a reflection of the process that
formed them.

■ THE CONNECTION BETWEEN Q AND ELECTRON
CORRELATION

We have seen how Q expresses differences in chemical bonding,
and we have discussed how different regions in Q versus ΔE
coincide with familiar bonding types. What more does this
analysis have to offer for the rationalization and conceptualizing
of chemical bonding? Capturing the correlation energy is one of
the central challenges in quantum chemistry. As was already
mentioned, correlation energy is defined as the energy
difference between the exact total energy and that obtained
following an infinite basis set Hartree−Fock calculation. A large

Figure 4. Q for selected nuclear-resisted diatomic oxides and
molecular nitrogen plotted versus the correlation energy of the
bonds. The correlation energy here is given as the percentage of the
total bond energy that comes from moving beyond the Hartree−Fock
limit.
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positive Q value implies the presence of multielectron effects.
But, as we now show, only a part of all multielectron effects can
be related to the missing correlation energy.
Let us begin with the isoelectronic series, N2, CO, BF.

Carbon monoxide has the strongest known chemical bond
(11.3 eV), which includes 33% correlation energy. CO is
isoelectronic with N2 (50% correlation energy). How does one
make sense of the differences and similarities between these
formally isoelectronic species? Because we in this instance
know that the bonds have quite sizable correlation energy
contributions (which is one subset of the multielectron
contributions captured by ω), we should expect Q values
larger than 1. Indeed, QN2 = 5.6 and QCO = 4.2. In this case, the
difference in Q between the two compounds can be largely
attributed to a difference in the electron correlation energy. The
reason is as follows: the ratio of QN2/QCO = 0.65 is near
identical to the quotient of the percentage of electron
correlation contributions to the bonds, E%‑corr,N2/E%‑corr,CO =
0.66, calculated by comparing Hartree−Fock energies with
experiment (Figure 4 and Supporting Information). O2 and
NO are two other near neighbors in the same domain in Figure
3 (QO2 = 9.3 and QNO = 8.4). The ratio of QO2/QNO = 1.11 is
again nearly identical to the corresponding correlation energy
percentage ratio, E%‑corr,O2/E%‑corr,NO = 1.11.
BF has a Q value of 4.7, which is intermediate between those

of CO and N2, with which BF is formally isoelectronic.
However, BF’s inherent correlation energy is 25%, and in this
case there is no good agreement between the Q and Ecorr-ratios
comparing BF ↔ CO and BF ↔ N2. Why not? This is because
the physical difference between these bonds is not only due to
correlation energy. Instead the difference is already apparent
from effects treated well by a simple Hartree−Fock wave
function (such as exchange repulsion). To put it differently,
multielectron interactions de facto increase as we proceed in
the order CO → BF → N2, but the nature of the interactions
responsible for this trend is not treated consistently by a one-
particle mean-field theory such as Hartree−Fock (Figure 4).

Figure 5 illustrates numerous tantalizing correlations
between Q and the correlation energy of various bonds, to
add to the one already shown in Figure 4. To include
multielectron-favored bonds (which have negative Q), we have
plotted the absolute value of Q versus correlation energy in
Figure 5. As discussed above, both negative and positive Q
values signify the presence of multielectron-interactions, albeit
with different physical interpretations. In the cases where
collections of bonds fall on the same line in a Q versus
correlation energy plot, such as H2 → LiH → Li2, or CO → N2
→ NO→ O2, the inherent differences between these bonds can
be directly attributed to differences in correlation energy (i.e.,
by effects beyond the mean field Hartree−Fock description). In
contrast, nonlinear relationships between bonds imply that
effects correctly treated by Hartree−Fock, such as exchange
interactions and Columbic interactions, better explain the
nature of the differences.
Figure 5F shows the correlation of the absolute value of Q

with % correlation energy for all diatomics investigated whose |
Q| < 13. Note what seems to be the approximately linear
behavior, but along several straight lines. We continue to
explore this tantalizing relationship.
The Q−correlation connection illustrates, and reminds us,

that differences in the nature of certain bonds cannot always be
found within an independent particle model. Sometimes energy
trends, or differences between bonds, arise due to subtle
differences in the correlated movement of electrons. Ration-
alizing the collective will of electrons is and will likely remain a
challenge. We suggest that ω is a useful expression of
multielectron interactions, all of them, and that Q, by extension,
is a window into the nature of the chemical bond.

■ CONCLUSIONS

This work begins by recapitulating the basics of a different kind
of energy partitioning scheme. Its basic tenet is that the energy
of any interaction, irrespective of its magnitude, is always
described by ΔE/n = Δχ ̅ + Δ(VNN + ω)/n (eq 2). Δχ ̅ describes

Figure 5. Q’s relation to electron correlation for several series of diatomics. The absolute of Q was used in these plots to allow inclusion and show
linear correlation with select multielectron-favored bonds. The correlation energy here is given as the percentage of the total bond energy that comes
from moving beyond the Hartree−Fock limit. (A) The H2 → LiH → Li2 progression. (B) The HCl → Cl2 → ClF progression. (C) Alkali metal
hydrides → free hydride. (D) Investigated fluorides show an exponential relationship (LiF and NaF excluded). (E) Various diatomics exhibiting
especially clear correlation between Q and correlation energy. (F) All investigated diatomics excluding species with |Q| > 13.0 and all weak dispersion
interactions.
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the average change of electron binding energies upon bond
formation, in molecular orbital terminology, the stabilization or
destabilization of the average orbital. Δ(VNN + ω)/n describes
how well changing nuclear−nuclear repulsions, ΔVNN, are
screened by changing multielectron interactions, Δω. Δω can,
in principle, be dissected into many useful and familiar terms,
including, for instance, static and dynamic correlation, electro-
statics, as well as dispersion interactions (a multielectron
phenomenon). Yet we follow a different road, keeping ω
undivided, and concentrating on obtaining it from experimental
observables or theory.
Two paradigms of chemical bond formation arise from this

analysis, and we label them nuclear-resisted and multielectron-
favored, respectively. In essence, what these two labels
distinguish is whether the Δχ ̅ -term is acting with or against
the change in total energy upon bond formation. In the latter
case, the formation of a bond or electron attachment in an
exoergic reaction is made possible by the introduction of
multielectron interactions. Without the latter, positive electron
affinities would not exist. Multielectron interactions come to
the fore in any process that involves substantial electron shifts
to, from, or within a molecule. For heteronuclear diatomics, the
bond type, multielectron-favored or nuclear-resisted, groups the
bonds into more or less polar, respectively, categories.
Our exploration of bonding leads us to a chemical interaction

descriptor called Q. To obtain Q for any given bond (or
interaction), we need to experimentally estimate, or quantum
mechanically calculate, two quantities, the bond dissociation
energy, ΔE, and Δχ.̅ With these two pieces of information in
hand, we can use eq 2 to calculate Δ(VNN + ω)/n, which
together with Δχ ̅ provides Q via eq 9.
If we plot Q versus the bond energy, intuitively familiar

bonding domains appear (Figure 3). There are no sharp
boundaries between these domains, yet we see groups of bonds
we associate with being covalent, covalent but more correlated,
polar and increasingly ionic, electrostatic, charge-shift bonds,
and dispersion interactions. Diatomics that if extended to
higher clusters would metallize are also separated. The potential
utility of this measure in predicting chemical and physical
properties of larger materials by the analysis of smaller subunits
exists.
Because ω includes all multielectron interactions, Q some-

times shows striking relationships with the correlation energy
contribution to bond energies.
This work has focused on simple diatomics. It is possible to

perform our energy partitioning analysis, and consider
variations in Q, for much more complex reaction mechanisms,
or physical processes, as future work will show.

■ METHODOLOGY
All experimental data are taken from the National Institute of Standards
and Technology (NIST) WebBook, unless otherwise specified. All
energies are given in electronvolt (eV), or electronvolt per electron
(eV e−1). One eV = 96.4853 kJ/mol = 23.0605 kcal/mol. To
approximate the change in energy, ΔE, from experimental heats of
formation or reaction, ΔHf/r

0, and vibrational spectroscopy, the
experimental harmonic zero-point energy EZPE was subtracted, that is,
ΔE ≈ ΔH0 − EZPE, where EZPE ≈ 1/2h∑νi, and where νi are the ith
fundamental frequencies of the molecule. Experimental structures were
used throughout. Dimers of the noble gas elements were calculated
using experimental potential well depths and geometries.95 The heat of
formation for gaseous CsI was taken from ref 96.
With the exception of experimental values for H− and H2, all

estimations for Δχ ̅ were obtained using the range-separated LC-BLYP

density functional. All such calculations used the aug-cc-pVQZ basis
set.97,98 The exceptions are calculations of Δχ ̅ for the noble gas dimers,
which were done using a Douglas−Kroll−Hess second-order scalar
relativistic Hamiltonian99−103 and the QZP-DKH basis set.104,105 All-
electron relativistic calculations on I2 and CsI were done using the very
large uncontracted ANO-RCC basis set. It should be stressed that the
choice of functional does not affect the general conclusions reached in
this work, nor does it appear to significantly affect Δχ ̅ values. From a
practical standpoint, and contrary to the absolute values of χ,̅
estimations of Δχ,̅ even with small basis sets, are more reliable due to
error cancellations. The latter is true irrespective of χ ̅ estimated
theoretically, or measured experimentally. Caution should be taken
when not considering all electrons explicitly. All levels shift slightly
upon reaction, even those close to the core. This becomes a concern
when treating especially heavy elements using pseudo potentials,
which effectively removes the majority of the electrons. A typical
pseudopotential-based (5s25p66s1) basis set for Cs, for example, only
includes 9 out of 55 electrons, or ca. 18% of the total. This is not
sufficient to estimate Δχ ̅ reliably. Estimates to the solvation of Na+,
Cl−, and NaCl in water were done by combining LC-BLYP/aug-cc-
pVQZ level calculations with the implicit polarizable-continuum SMD
method.106

A python script for reading energies and structures and performing
the χ ̅ -analysis on molecules and atoms is provided in the Supporting
Information of our previous paper.1 It relies on cclib,107 which can
interpret output from numerous popular quantum chemistry
programs.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/jacs.5b12434.

Various bond characteristics and data for all investigated
diatomics; tests of calculating Δχ ̅ reliably using different
methods; and comments on the possibility of expressing
covalence within 0−100% (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*martinr@kth.se

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Our research was supported by the Energy Frontier Research in
Extreme Environments (EFree) Center, an Energy Frontier
Research Center funded by the U.S. Department of Energy,
Office of Science, under Award number DE-SC0001057.
National Science Foundation (NSF) funding through Research
Grant CHE 13-05872 is also gratefully acknowledged. Toby
Zeng and Peng Xu are acknowledged for valuable discussions.

■ REFERENCES
(1) Rahm, M.; Hoffmann, R. J. Am. Chem. Soc. 2015, 137, 10282−
10291.
(2) Allen, L. C. J. Am. Chem. Soc. 1989, 111, 9003−9014.
(3) Allen, L. C. J. Am. Chem. Soc. 1992, 114, 1510−1511.
(4) Allen, L. C. Int. J. Quantum Chem. 1994, 49, 253−277.
(5) Mann, J. B.; Meek, T. L.; Allen, L. C. J. Am. Chem. Soc. 2000, 122,
2780−2783.
(6) Deleuze, M. S.; Cederbaum, L. S. Adv. Quantum Chem. 1999, 35,
77−94.
(7) Cederbaum, L. S.; Domcke, W.; Schirmer, J.; Von Niessen, W.
Adv. Chem. Phys. 1986, 65, 115−159.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b12434
J. Am. Chem. Soc. 2016, 138, 3731−3744

3742

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/jacs.5b12434
http://pubs.acs.org/doi/suppl/10.1021/jacs.5b12434/suppl_file/ja5b12434_si_001.pdf
mailto:martinr@kth.se
http://dx.doi.org/10.1021/jacs.5b12434


(8) Cederbaum, L. S.; Domcke, W.; Schirmer, J.; Von Niessen, W.;
Diercksen, G. H. F.; Kraemer, W. P. J. Chem. Phys. 1978, 69, 1591−
1603.
(9) Pettifor, D. Bonding and Structure of Molecules and Solids; Oxford
University Press: New York, 1995.
(10) Burdett, J. K. Struct. Bonding (Berlin) 1987, 65, 29−90.
(11) Burdett, J. K.; Lee, S. J. Am. Chem. Soc. 1985, 107, 3050−3063.
(12) Burdett, J. K.; Lee, S. J. Am. Chem. Soc. 1985, 107, 3063−3082.
(13) Politzer, P.; Murray, J. S.; Bulat, F. A. J. Mol. Model. 2010, 16,
1731−1742.
(14) Murray, J. S.; Shields, Z. P.-I.; Lane, P.; Macaveiu, L.; Bulat, F. A.
J. Mol. Model. 2013, 19, 2825−2833.
(15) Toro-Labbe, A.; Jaque, P.; Murray, J. S.; Politzer, P. Chem. Phys.
Lett. 2005, 407, 143−146.
(16) Politzer, P.; Peralta-Inga, S.; Zenaida; Bulat, F. A.; Murray, J. S. J.
Chem. Theory Comput. 2011, 7, 377−384.
(17) Jin, P.; Murray, J. S.; Politzer, P. Int. J. Quantum Chem. 2004, 96,
394−401.
(18) Politzer, P.; Murray, J. S.; Grice, M. E.; Brinck, T.; Ranganathan,
S. J. Chem. Phys. 1991, 95, 6699−6704.
(19) Pauling, L. J. Am. Chem. Soc. 1932, 54, 3570−3582.
(20) Mulliken, R. S. J. Chem. Phys. 1934, 2, 782−793.
(21) Gordy, W. Phys. Rev. 1946, 69, 604−607.
(22) Walsh, A. D. Proc. R. Soc. London, Ser. A 1951, 207, 13−30.
(23) Sanderson, R. T. Science (Washington, DC, U. S.) 1951, 114,
670−672.
(24) Allred, A. L.; Rochow, E. G. J. Inorg. Nucl. Chem. 1958, 5, 264−
268.
(25) Iczkowski, R. P.; Margrave, J. L. J. Am. Chem. Soc. 1961, 83,
3547−3551.
(26) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem.
Phys. 1978, 68, 3801−3807.
(27) Sanderson, R. T. J. Am. Chem. Soc. 1983, 105, 2259−2261.
(28) Pearson, R. G. J. Am. Chem. Soc. 1985, 107, 6801−6806.
(29) Reed, J. L. J. Phys. Chem. 1991, 95, 6866−6870.
(30) Ghosh, D. C. J. Theor. Comput. Chem. 2005, 4, 21−33.
(31) Putz, M. V. Int. J. Quantum Chem. 2006, 106, 361−389.
(32) Ferro-Costas, D.; Perez-Juste, I.; Mosquera, R. A. J. Comput.
Chem. 2014, 35, 978−985.
(33) Boyd, R. J.; Edgecombe, K. E. J. Am. Chem. Soc. 1988, 110,
4182−4186.
(34) Boyd, R. J.; Boyd, S. L. J. Am. Chem. Soc. 1992, 114, 1652−1655.
(35) Frenking, G.; Froehlich, N. Chem. Rev. (Washington, DC, U. S.)
2000, 100, 717−774.
(36) Matito, E.; Sola, M. Coord. Chem. Rev. 2009, 253, 647−665.
(37) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10,
325−340.
(38) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1558−1565.
(39) Bagus, P. S.; Hermann, K.; Bauschlicher, C. W., Jr. J. Chem. Phys.
1984, 80, 4378−4386.
(40) Bagus, P. S.; Hermann, K.; Bauschlicher, C. W., Jr. J. Chem. Phys.
1984, 81, 1966−1974.
(41) Stevens, W. J.; Fink, W. H. Chem. Phys. Lett. 1987, 139, 15−22.
(42) Glendening, E. D.; Streitwieser, A. J. Chem. Phys. 1994, 100,
2900−2909.
(43) Glendening, E. D. J. Am. Chem. Soc. 1996, 118, 2473−2482.
(44) Glendening, E. D. J. Phys. Chem. A 2005, 109, 11936−11940.
(45) Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211−
7218.
(46) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985,
83, 735−746.
(47) Korchowiec, J.; Uchimaru, T. J. Chem. Phys. 2000, 112, 1623−
1633.
(48) Mayer, I. Chem. Phys. Lett. 2003, 382, 265−269.
(49) Mayer, I.; Hamza, A. Int. J. Quantum Chem. 2005, 103, 798−
807.
(50) Szalewicz, K. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2,
254−272.

(51) Jansen, G. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4,
127−144.
(52) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev.
(Washington, DC, U. S.) 1994, 94, 1887−1930.
(53) Vyboishchikov, S. F.; Salvador, P. Chem. Phys. Lett. 2006, 430,
204−209.
(54) Krapp, A.; Bickelhaupt, F. M.; Frenking, G. Chem. - Eur. J. 2006,
12, 9196−9216.
(55) von, H.; Moritz; Frenking, G. Wiley Interdiscip. Rev.: Comput.
Mol. Sci. 2012, 2, 43−62.
(56) Bader, R. F. W. Acc. Chem. Res. 1985, 18, 9−15.
(57) Francisco, E.; Pendas, A. M.; Blanco, M. A. J. Chem. Theory
Comput. 2006, 2, 90−102.
(58) Wu, Q.; Ayers, P. W.; Zhang, Y. J. Chem. Phys. 2009, 131,
164112/1−164112/8.
(59) Wu, Q. J. Chem. Phys. 2014, 140, 244109/1−244109/9.
(60) Baba, T.; Takeuchi, M.; Nakai, H. Chem. Phys. Lett. 2006, 424,
193−198.
(61) Nakai, H.; Kurabayashi, Y.; Katouda, M.; Atsumi, T. Chem. Phys.
Lett. 2007, 438, 132−138.
(62) Liu, S. J. Chem. Phys. 2007, 126, 244103.
(63) Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-
Gordon, M. J. Phys. Chem. A 2007, 111, 8753−8765.
(64) Horn, P. R.; Sundstrom, E. J.; Baker, T. A.; Head-Gordon, M. J.
Chem. Phys. 2013, 138, 134119.
(65) Mo, Y.; Bao, P.; Gao, J. Phys. Chem. Chem. Phys. 2011, 13,
6760−6775.
(66) Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry; Dover
Publications, Inc.: New York, 1996.
(67) Colonna, F.; Savin, A. J. Chem. Phys. 1999, 110, 2828−2835.
(68) Teale, A. M.; Coriani, S.; Helgaker, T. J. Chem. Phys. 2010, 132,
164115/1−164115/19.
(69) Ryabinkin, I. G.; Kohut, S. V.; Staroverov, V. N. Phys. Rev. Lett.
2015, 115, 1−5.
(70) Cuevas-Saavedra, R.; Ayers, P. W.; Staroverov, V. N. J. Chem.
Phys. 2015, 143, 244116/1−244116/9.
(71) Tsuneda, T.; Song, J.-W.; Suzuki, S.; Hirao, K. J. Chem. Phys.
2010, 133, 174101.
(72) Salzner, U.; Baer, R. J. Chem. Phys. 2009, 131, 231101.
(73) Iikura, H.; Tsuneda, T.; Yanai, T.; Hirao, K. J. Chem. Phys. 2001,
115, 3540−3544.
(74) Kuemmel, S.; Kronik, L. Rev. Mod. Phys. 2008, 80, 3−60.
(75) Gritsenko, O. V.; Baerends, E. J. J. Chem. Phys. 2002, 117,
9154−9159.
(76) Chong, D. P.; Gritsenko, O. V.; Baerends, E. J. J. Chem. Phys.
2002, 116, 1760−1772.
(77) Kraisler, E.; Kronik, L. J. Chem. Phys. 2014, 140, 18A540.
(78) Schmidt, T.; Kraisler, E.; Kronik, L.; Kuemmel, S. Phys. Chem.
Chem. Phys. 2014, 16, 14357−14367.
(79) Stowasser, R.; Hoffmann, R. J. Am. Chem. Soc. 1999, 121, 3414−
3420.
(80) Janak, J. F. Phys. Rev. B: Condens. Matter Mater. Phys. 1978, 18,
7165−7168.
(81) Ryabinkin, I. G.; Staroverov, V. N. J. Chem. Phys. 2014, 141,
084107.
(82) Harrison, J. F.; Lawson, D. B. J. Chem. Educ. 2005, 82, 1205−
1209.
(83) Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. C. Nat. Chem.
2009, 1, 443−449.
(84) Peterson, K. A.; Woods, R. C. J. Chem. Phys. 1987, 87, 4409−
4418.
(85) Fantuzzi, F.; Cardozo, T. M.; Nascimento, M. A. C. J. Phys.
Chem. A 2015, 119, 5335−5343.
(86) Montgomery, J. A., Jr.; Frisch, M. J.; Ochterski, J. W.; Petersson,
G. A. J. Chem. Phys. 2000, 112, 6532−6542.
(87) Wilson, S. Electron Correlation in Molecules; Dover Publications,
Inc.: Mineola, NY, 1984.
(88) Purwanto, W.; Al-Saidi, W. A.; Krakauer, H.; Zhang, S. J. Chem.
Phys. 2008, 128, 114309/1−114309/7.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b12434
J. Am. Chem. Soc. 2016, 138, 3731−3744

3743

http://dx.doi.org/10.1021/jacs.5b12434


(89) Gordon, M. S.; Truhlar, D. G. Theor. Chim. Acta 1987, 71, 1−5.
(90) Hijikata, K. J. Chem. Phys. 1961, 34, 221−231.
(91) Barden, C. J.; Rienstra-Kiracofe, J. C.; Schaefer, H. F., III. J.
Chem. Phys. 2000, 113, 690−700.
(92) Vaisnys, J. R.; Zmuidzinas, J. S. Appl. Phys. Lett. 1978, 32, 152−
153.
(93) Struve, W. S.; Kitagawa, T.; Herschbach, D. R. J. Chem. Phys.
1971, 54, 2759−2761.
(94) Neoh, S. K.; Herschbach, D. R. J. Chem. Phys. 1975, 63, 1030−
1032.
(95) Housden, M. P.; Pyper, N. C. Mol. Phys. 2007, 105, 2353−2361.
(96) Roki, F.-Z.; Ohnet, M.-N.; Fillet, S.; Chatillon, C.; Nuta, I. J.
Chem. Thermodyn. 2014, 70, 46−72.
(97) Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys.
1992, 96, 6796−6806.
(98) Balabanov, N. B.; Peterson, K. A. J. Chem. Phys. 2005, 123,
064107.
(99) Douglas, M.; Kroll, N. M. Ann. Phys. (Amsterdam, Neth.) 1974,
82, 89−155.
(100) Hess, B. A. Phys. Rev. A: At., Mol., Opt. Phys. 1985, 32, 756−
763.
(101) Hess, B. A. Phys. Rev. A: At., Mol., Opt. Phys. 1986, 33, 3742−
3748.
(102) Barysz, M.; Sadlej, A. J. J. Mol. Struct.: THEOCHEM 2001, 573,
181−200.
(103) de, J. W. A.; Harrison, R. J.; Dixon, D. A. J. Chem. Phys. 2001,
114, 48−53.
(104) Ceolin, G. A.; Berredo, R. C.; Jorge, F. E. Theor. Chem. Acc.
2013, 132, 1−13.
(105) Jorge, F. E.; Canal Neto, A.; Camiletti, G. G.; Machado, S. F. J.
Chem. Phys. 2009, 130, 064108.
(106) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B
2009, 113, 6378−6396.
(107) O’Boyle, N. M.; Tenderholt, A. L.; Langner, K. M. J. Comput.
Chem. 2008, 29, 839−845.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.5b12434
J. Am. Chem. Soc. 2016, 138, 3731−3744

3744

http://dx.doi.org/10.1021/jacs.5b12434

