Hydrostatic high-pressure studies to 25 GPa on the model superconducting pnictide $LaRu_2P_2$

Neda Foroozani¹, Jinhyuk Lim¹, James Schilling¹, Roxanna Fotovat², Chong Zheng² and Roald Hoffmann³

¹Department of Physics, Washington Univ., One Brookings Dr., St. Louis, MO 63130, USA ²Department of Chemistry and Biochemistry, Northern Illinois Univ., DeKalb, IL 60115, USA ³Department of Chemistry and Chemical Biology, Cornell Center for Materials Research, Cornell University, Ithaca, NY 14853, USA

E-mail: nforouzani@physics.wustl.edu

Abstract. Prior to the discovery of the Fe-pnictides in 2008, the ruthenium phosphide LaRu₂P₂ possessed the highest value of the superconducting transition temperature, $T_c \approx 4$ K, in the entire pnictide family. Recently, there has been renewed interest in this compound in an effort to better understand why the Fe-pnictides have much higher values of T_c . In related phosphides superconductivity appears to only be present if the separation between the phosphor ions d_{p-p} in neighboring Ru₂P₂ planes is greater than the critical value 2.8 Å, too great for a P-P covalent bond to be formed. For example, in superconducting LaRu₂P₂, the value of d_{p-p} is 3.0 Å. To test these ideas directly, we have carried out hydrostatic high-pressure studies on single-crystalline LaRu₂P₂ in a diamond-anvil cell using He pressure medium to pressures as high as 25 GPa and temperatures as low as 1.5 K. We find that T_c initially increases under pressure, but suddenly disappears above 2.1 GPa. Since d_{p-p} decreases under pressure, the sudden disappearance of superconductivity is likely due to the formation of a covalent P-P bond between adjacent Ru_2P_2 planes and a possible structural phase transition.

1. Introduction

Since the discovery of the fluorine-doped iron- and arsenic-based 1111 superconductors with T_c ≈ 26 K in 2008 [1], many more related superconductors with tetragonal structure have been reported, among them the 122 family, such as (Ca, Sr, Ba)Fe₂As₂, consisting of more than 450 members, including K-doped BaFe₂As₂ with $T_c \approx 40$ K. The isoelectronic pnictides (Ca, Sr, $Ba)Fe_2P_2$ are free of arsenic, but none were found to be superconducting at ambient pressure. The substitution of nonmagnetic transition metals for Fe in these phosphides resulted in the stoichiometric compounds $LaRu_2P_2$, $BaNi_2P_2$, $SrNi_2P_2$, $BaIr_2P_2$, and $BaRh_2P_2$, all of which are superconducting with $T_c \approx 4$ K. These phosphides are of particular interest with respect to superconductivity since, unlike their arsenic counterparts, no magnetic order is present to possibly weaken or interfere with the superconducting state.

In the tetragonal 122 pnictide $LaRu_2P_2$, the superconductivity originates in the quasi-2D Ru_2P_2 planes, in analogy with the CuO_2 planes in the cuprates. The distance between the phosphor ions d_{p-p} in neighboring planes is believed to be of particular importance. Electronic structure calculations by Hoffmann and Zheng [2] reveal that the bonding or antibonding nature of the P-P bond is responsible for the wide variation in bond length [3]. It has been inferred

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution (cc of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

from structural analysis that the interlayer P-P bond distance d_{p-p} is a relevant parameter to identify when superconductivity occurs in the 122 phosphides and when it does not [4]. From theoretical considerations the critical distance for covalent P-P bond formation is $d_{p-p} \approx 2.8$ Å (see figure 1) [2]. The calculated energy bands and electronic charge density of CaRh₂P₂, SrRh₂P₂ and BaRh₂P₂ show that a covalent P-P bond is only formed for CaRh₂P₂ where d_{p-p} ≈ 2.25 Å, but not for SrRh₂P₂ and BaRh₂P₂ where $d_{p-p} \approx 3.3$ Å and 3.7 Å, respectively [5]. In contrast to BaRh₂P₂, CaRh₂P₂ is not superconducting. This suggests that a covalent P-P bond between adjacent planes is detrimental to the appearance of superconductivity.

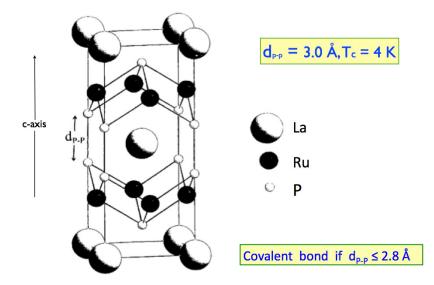


Figure 1. Tetragonal unit cell of LaRu₂P₂. The P-P separation at ambient pressure is $d_{p-p} \approx 3.0$ Å.

To test these ideas, it would be interesting to take a superconducting 122 compound where $d_{p-p} > 2.8$ Å and apply pressure to decrease d_{p-p} to a value below 2.8 Å. The superconductor LaRu₂P₂ is the ideal candidate for such an experiment since its value of $d_{p-p} = 3.0$ Å lies only slightly above the critical value 2.8 Å. In this paper we report the results of ac susceptibility measurements on LaRu₂P₂ to hydrostatic pressures as high as 25 GPa and to temperatures as low as 1.5 K. T_c is found to increase with pressure at the rate +0.67(5) K/GPa to 2.1 GPa pressure, but to suddently disappear at higher pressures, presumably due to the formation of a covalent P-P bond. A more detailed account of these and further results will be given elsewhere [6].

2. Experimental details

Single crystals (mm in size) of $LaRu_2P_2$ were grown by a tin flux method. One gram of elemental La (filed into powder), Ru (powder), and P (pieces) were thoroughly mixed in 1:2:2 molar ratio together with 11 g of Sn (powder) in an argon filled glove box. The mixture was transferred to a tantalum tube, sealed under vacuum and heated to 1050°C for 24 days in a computer-controlled furnace. The sample was cooled down naturally by turning off the furnace. The Sn flux was removed by soaking the sample in 6M HCl overnight. Many metallic rectangular crystals were observed (see figure 2), and their composition was confirmed to be in the 1:2:2 ratio by a TESCAN VEGA II energy dispersive X-ray microanalyzer.

AC susceptibility measurements to hydrostatic pressures as high as 25 GPa were carried out in a diamond-anvil pressure cell [7] with two opposing 1/6-carat, type-Ia diamonds with either

0.5 mm or 0.9 mm diameter culets. The primary ac field was 3 Oe (rms) at 1023 Hz. The signal from two calibrated, compensated secondary coils, one surrounding the gasket containing the sample and the other surrounding a "dummy" gasket, was fed into a Stanford Research SR830 digital lock-in amplifier via an SR554 transformer preamplifier. Temperatures were measured using a calibrated Cernox resistor from Lake Shore Cryotronics located close to the sample.

Three experiments were carried out. In the first, diamond anvils with 0.5 mm culets were used and a 250 μ m diameter hole drilled through the center of a gold-plated Re gasket (3 mm in diameter, 250 μ m thick), preindented to a thickness of ~72 μ m. The pressure was determined *in situ* by placing small ruby spheres [8] in the sample space. In the second and third experiments anvils with 0.5 mm and 0.9 mm culets were used with gold-plated CuBe gaskets. The LaRu₂P₂ crystal was placed in a 260- μ m diameter hole (for 0.5 mm culets) and a 450- μ m diameter hole (for 0.9 mm culets) drilled through the center of a CuBe gasket (3 mm in diameter, 250 μ m thick), preindented to a thickness of ~100 μ m (see figure 3). AC susceptibility data were obtained at the following pressures: first experiment (0.8, 1.1, 1.6, 2.1, 2.5, 5.5, 9.4 GPa), second experiment (0, 3.2, 4.8, 7, 20, 25 GPa), third experiment (0, 0.81, 0.9, 1.86, 2.05, 2.4, 3.2, 5 GPa).

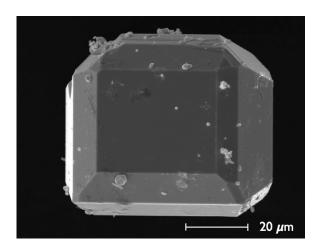


Figure 2. High quality $LaRu_2P_2$ single crystal.

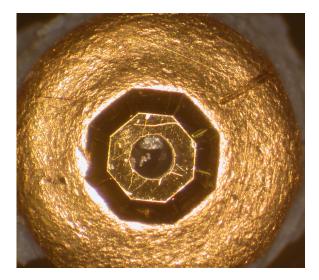


Figure 3. Pre-indented CuBe gasket with single-crystal sample and ruby spheres seen in 450 μ m diameter gasket hole.

The pressure was determined at a temperature of 5 -10 K to within ± 0.2 GPa using the revised ruby pressure scale of Chijioke *et al* [9]. Hydrostatic pressure conditions were assured by using He as pressure medium since it remains fluid to a higher pressure and lower temperature than any other substance. Even when He solidifies, it is a relatively soft solid and can only exert weak shear stresses on the sample it surrounds. Further details of the DAC pressure techniques are given elsewhere [7, 10].

3. Results and discussions

In figure 4 the real part of the ac susceptibility of LaRu₂P₂ from the first experiment is plotted versus temperature to 10 K for hydrostatic pressures to 2.5 GPa. Two superconducting transitions are seen in the data at 1.1, 1.6 and 2.1 GPa. The large transition near 4 K arises from the superconductivity of the Re gasket; the smaller transition at a somewhat higher temperature is from the sample. The T_c value of the sample shifts to higher temperatures with pressure, but suddenly disappears above 2.1 GPa. The pressure dependence of T_c is found to be reversible upon release of pressure. In the second and third experiments non-superconducting CuBe gaskets were used, allowing the search for superconductivity in the sample to temperatures as low as 1.5 K.

In figure 5 the values of T_c obtained in all experiments from the transition midpoint are plotted versus hydrostatic pressure. T_c is seen to initially increase with pressure at the rate +0.67(5) K/GPa to 2.1 GPa, but to suddenly disappear to the highest pressure measured, namely 25 GPa. The initial dependence of T_c on pressure agrees well with parallel experiments to 0.44 GPa in a He-gas apparatus [6].

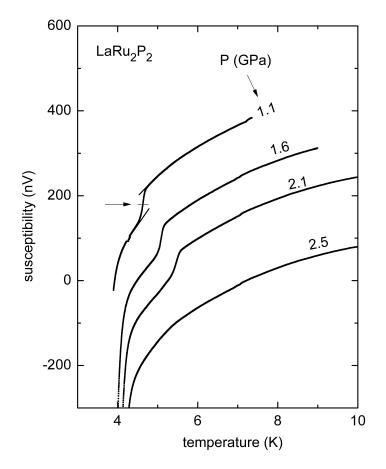
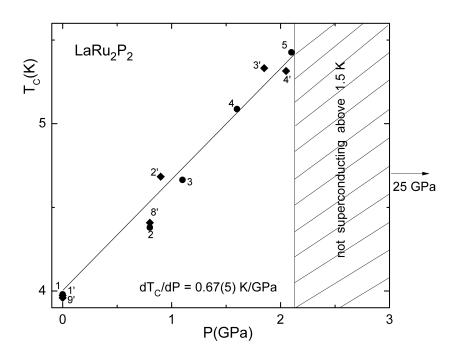



Figure 4. Real part of ac susceptibility versus temperature at several hydrostatic (DAC) pressures for LaRu₂P₂. T_c is determined from transition midpoint (see data at 1.1 GPa). T_c clearly increases as pressure is applied. The order of measurement is 1.1, 1.6, 2.1, and 2.5 GPa. Steep susceptibility drop near 4 K is from superconductivity of Re gasket.

The principal result of the present experiments is that the superconducting state in LaRu₂P₂ abruptly disappears for hydrostatic pressures above 2.1 GPa. Since the value of d_{p-p} for this compound is only 0.2 Å greater than the critical value 2.8 Å, we suggest that at 2 GPa the P-P separation has decreased sufficiently that a covalent P-P bond forms, resulting in the loss of superconductivity. In addition, when a covalent P-P bond is formed, one would expect a sudden decrease in the lattice parameter along the *c*-axis, in analogy with previous x-ray studies on SrRh₂P₂ where the *c*-axis is observed to decrease abruptly at 5 GPa [3]. Single crystal x-ray diffraction studies under pressure on LaRu₂P₂ would resolve this issue.

For SrRh₂P₂ the P-P separation is $d_{p-p} = 3.3$ Å at ambient pressure. Using the known *c*-axis

compressibility $\kappa_c = 5.2 \times 10^{-3}$ GPa⁻¹, where c = 11.7 Å, a pressure of 5 GPa would decrease c by approximately 0.3 Å [3]. If all of this reduction in c comes from a reduction in the P-P separation d_{p-p} , then at 5 GPa one would expect d_{p-p} to be reduced from 3.3 Å to 3.0 Å which is quite close to the critical value of 2.8 Å. If one assumes that LaRu₂P₂ (where c = 10.7 Å) has a c-axis compressibility comparable to that of SrRh₂P₂, then a pressure of 2 GPa would lead to a reduction in c of approximately 0.1 Å, placing d_{p-p} close to the critical value of 2.8 Å. It thus seems quite likely that the sudden disappearance of superconductivity at 2 GPa in LaRu₂P₂ is the result of the formation of strong covalent P-P bonds between adjacent planes.

Figure 5. Dependence of the superconducting transition temperature T_c on pressure for single crystalline LaRu₂P₂ determined by measurements of ac susceptibility up to 25 GPa. Numbers give order of measurement. Primed numbers give T_c values from Fig. 4 (first experiment). Unprimed numbers give T_c values from third experiment. No superconducting transition was observed for pressures above 2.1 GPa.

In conclusion, the present ac susceptibility studies on $LaRu_2P_2$ to 25 GPa hydrostatic pressure demonstrate that the superconducting transition temperature increases with pressure at the rate of +0.67(5) K/GPa to 2 GPa but disappears abruptly at higher pressures, 25 GPa being the highest pressure measured and 1.5 K the lowest temperature. The separation between P-P atoms in LaRu₂P₂ is close to the critical value 2.8 Å at ambient pressure. When 2 GPa pressure is applied, the P-P separation likely decreases to the critical value and a strong covalent bond is formed, significantly altering the electronic properties in the Ru₂P₂ planes of the compound and destroying its superconductivity. The present experiments thus provide further evidence for the sensitivity of the superconducting properties of the 122 pnictides to the interplanar separation.

Acknowledgments

Research at Washington University is gratefully supported by the National Science Foundation under DMR-1104742.

References

- [1] Kamihara Y, Watanabe T, Hirano M, and Hosono H 2008 J. Am. Chem. Soc. 130 3296
- [2] Hoffmann R and Zheng C 1985 J. Phys. Chem. 89 4175 and refrences cited therein
- [3] Huhnt C, Michels G, Roepke M, Schlabitz W, Wurth A, Johrendt D and Mewis A 1997 Physica B 240 26
- [4] Berry N, Capan C, Seyfarth G, Bianchi A D, Ziller J and Fisk Z 2009 Phys. Rev. B 79 180502
- [5] Shameem Banu I B, Rajagopalan M and Vaitheeswaran G 2000 Solid State Commun. 116 451
- [6] Fotovat R, Foroozani N, Wang L, Lim J, Xiao Zh, Schlueter J, Schilling J S, Zheng C and Hoffmann R (unpublished)
- [7] Schilling J S 1984 Mat. Res. Symp. Proc. 22 79
- [8] Chervin J C, Canny B and Mancinelli M 2001 High Pressure Res. 21 305
- [9] Chijioke A D, Nellis W J, Soldatov A and Silvera I F 2005 J. Appl. Phys. 98 114905
- [10] Hamlin J J, Tissen V G and Schilling J S 2006 Phys. Rev. B 73 094522