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1. INTRODUCTION

For a variety of intermetallic compounds, the per-atom
valence electron count is seen as the primary determinant of
the ground-state crystal structure. The remarkable relationship
between structure and electron count in these so-called “electron
phases”, a regularity independent of the elements involved, has
been illuminated by a variety of insights. The key empirical
observations were made by Hume-Rothery (whose name is often

attached to electron phases) over several decades in the mid-
1900s.1,2 Hume-Rothery noted that in many cases, a crystal
structure exists at the same electron count for various combina-
tions of elements. Two prototypical examples of this, both
discussed in detail later in this work, are the β-brass (bcc) and
γ-brass (Cu5Zn8

3) structures. In phase diagrams such as those of
Cu-Zn, Cu-Ga, and Cu-Sn,4 despite the changing number of
valence electrons in the element paired with Cu, the β and γ
structures exist in relatively narrow composition ranges sur-
rounding 3/2 and 21/13 valence electrons per atom, respectively.

Hume-Rothery’s observations have since been supplemented
by a rich literature of experimental and theoretical work. On the
experimental side, some extraordinarily complex crystalline
phases have been synthesized with hundreds or even thousands
of atoms in their unit cells, whose stability seems to require
specific ranges of valence electrons per atom. These include the
Samson phases,5-9 Vernier phases,10-17 a variety of other
compounds related to γ-brass,18-37 and even long-period super-
lattices of undetermined structure whose cell axes can reach
200 nm.38-40

A theoretical rationale for the relationships between structural
stability and valence electron count was first developed by
Jones,41 and later Mott and Jones42 (referred to from now on
collectively as MJ). Their model argues that it is favorable for a
compound to adopt a structure for which the Fermi surface cuts
the boundaries of the first Brillouin zone or higher zones. This
perturbation-theory-based approach sees stabilization in allow-
ing free-electron plane-wave states near the Fermi energy to mix,
pushing the energies of filled states down and those of unfilled
states up. Concentrating mainly on γ-brass and employing a
variety of approaches, subsequent work has critically assessed the
MJ model and has repeatedly affirmed its basic principles. In
recent times, much of that work has involved band structure
calculations, so as to properly include d orbitals.43-50 These
computations have also confirmed that the mixing of filled and
unfilled states leads to a pseudogap in the density of states that is
responsible for the γ-brass stability range. Other work has noted
a different piece of evidence in support of Mott and Jones’s
arguments, namely, the rapid variation of the dielectric function
near the Fermi energy.51-53 The same concepts used to examine
γ-brass have also been applied to other families of metallic
structures.54-60

A feature shared by the MJ model and the related dielectric
function-based rationale for Hume-Rothery’s electron-counting
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rules is that the arguments are made in reciprocal space.
Chemists, whose experience is rooted in real-space structure, at
times have trouble with reciprocal-space arguments. A comple-
mentary line of theoretical research has focused on real-space
patterns in atomic positions. The patterns discerned have been
discussed on a number of length scales, from coordination
polyhedra and their organization,21,22,61 to clusters of approxi-
mately 20-30 atoms,3,34,62 to larger so-called “nanoclusters” and
their assembly into “microframeworks”,63-65 and even to the
realm of projections of higher-dimensional clusters and
crystals.66,67 Some real-space studies of γ-brass relatives have
begun to delve into questions of electronic structure, but they
have been more concerned with elemental site preferences than
with preferred valence electron counts.8,17,68,69

Of course, real-space arguments have a long history of
rationalizing and predicting “magic” electron counts (i.e., sub-
stantial gaps between filled and unfilled levels), and their ability
to do so has contributed to chemists’ inclination to stay in real
space. For molecules, some of our most successful qualitative
explanations for electron-counting rules use real-space, rather
than momentum-space, arguments. The octet rule for main-
group elements,70,71 the 18-electron rule for transition-metal
complexes,72 H€uckel’s rules for π-electrons in aromatics,73-75

and the Wade-Mingos rules for electron-deficient clusters76,77

all rest on real-space molecular orbital models that use an atomic
orbital basis set. Even in crystals there have been calculations
showing that such methods can correctly reproduce the energy
orderings that lead to various electron-counting rules.78-81

Since the MJ arguments rationalize the stability of electron
phases, it should be possible to cast them in terms of real-space
electronic states. Given the near-coincidence of band structures
generated using models based on linear combinations of atomic
orbitals (LCAO) (even those produced by the simplest extended
H€uckel method) and those derived from plane waves, there must
exist a mapping that yields the relationship between the plane-
wave electronic states relevant to the MJ model and certain
LCAO. Such a real-space model could place the driving force for
the stability range in electron phases as a gap between
LCAO bands.

It is our goal in this work to develop such a bridging model.
Sato et al.82 have already begun to explore this linkage between
nearly free electrons and LCAO, using densities of states to show
for an Al-Li-Cu quasicrystal approximant how orbital hybri-
dization splits bonding from antibonding states across the Fermi
energy. The linkage has also been explored by Feng.83 Coming
from a chemical perspective, yet fully cognizant of the power of
the physical argument, we will show that Hume-Rothery’s
observations and the MJ approach to them can be understood
in the same basic way that we understand all electron-counting
rules. Just as the octet and 18-electron rules stem from the energy
gap between one s/p or s/p/d electronic shell and the next, the
rules inHume-Rothery electron phases arise from themixing and
splitting of an s-based band and a p-based band.

In this work, we must mix some concepts and arguments that
are typically used by physicists with others that are part of the
theoretical language of chemists. Therefore, in the next section,
we introduce the basic concepts underlying both approaches
using the simplest imaginable crystal and prepare the reader
(whether nominally a physicist or a chemist) for what is to come.
Later on, we review the MJ model, cast it in the language of
LCAO, and discuss its validity and implications with respect to
increasingly complex Hume-Rothery electron phases. We also

see how the understanding gained may explain existing complex
intermetallics, and predict new ones.

2. RECONCILING THE NEARLY FREE ELECTRON AND
LCAO MODELS

The hypothetical crystal on which this section focuses is the
one-dimensional (1-D) chain of atoms of a main-group element.
We simplify the system even further by looking only at its
electronic states of σ-symmetry. If asked to sketch the band
structure of this crystal, physicists and chemists would likely
approach the problem from very different directions—physicists
in terms of the mixing of free-electron plane-wave states in the
presence of a periodic potential and chemists in terms of
symmetry-adapted linear combinations of atomic orbitals whose
energies are shaped by bonding and antibonding interactions.
While to a degree this is a caricature, that dichotomy represents
our experience based on creative collaborations with both
communities. There is no doubt that, as a referee notes, physicists
are familiar with the LCAOmodel, in its tight-binding reincarna-
tion. Even for a case as simple as this one, it takes a fair bit of
thought to recognize the deep similarities between the results of
these two approaches.We find it instructive to look briefly at each
and then compare and contrast the two.

First, we should make a brief note about our use of mathe-
matical notation in this paper. As often as possible, our notation is
intuitive and of minimal complexity and is consistent with itself
and with past work. A few conventions are worth mentioning.
When employing a nearly free electron model, we refer to free-
electron plane waves by lowercase ψ, nearly free electron wave
functions (sums of plane waves) by capitalΨ, and the energies of
either by ε. When using an LCAO model, we refer to atomic
orbitals by lowercase φ, crystal orbitals (sums of atomic orbitals)
by capitalΦ, and the energies of either by ε. We refer to energy
by capital E in all figures. Other issues of notation are noted in the
text as they arise.

2.1. Starting with Free Electrons: The Physical Viewpoint
The static energy levels of an electron are governed by the

time-independent Schr€odinger equation:

-
p2

2m
D2

Dx2
þ D2

Dy2
þ D2

Dz2

 !
þ Vð rBÞ

" #
Ψð rBÞ ¼ εΨð rBÞ

For a free electron, one whose environment has no external
potential, the equation is simpler:

-
p2

2m
D2

Dx2
þ D2

Dy2
þ D2

Dz2

 !
ψð rBÞ ¼ εψð rBÞ

When treating a free electron, one traditionally enforces a
periodic boundary condition such as the following, which
assumes the eigenfunctions (electronic wave functions) repeat
themselves outside of a cube of edge length L = V1/3, a
macroscopic quantity:

ψðx, y, zÞ ¼ ψðxþ L, y, zÞ ¼ ψðx, yþ L, zÞ ¼ ψðx, y, zþ LÞ
84 The set of periodic eigenfunctions of this equation are plane
waves, each of which is associated with a wavevector kB whose
magnitude is inversely proportional to its wavelength:

ψ kBð rBÞ ¼ 1ffiffiffiffi
V

p ei kB 3 rB



C dx.doi.org/10.1021/cr1001222 |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

The corresponding eigenvalues (energies) are proportional
to |kB|

2:

ε kB ¼ p2

2m
jkBj2

The electrons of interest to this subsection are further con-
strained, for pedagogical reasons. They are free to move not
throughout a 3-D space, but along one dimension, which we
define as the x-axis. The Schr€odinger equation and its periodic
boundary condition therefore become

-
p2

2m
D2

Dx2
ψðxÞ ¼ εψðxÞ

ψðxÞ ¼ ψðxþ LÞ
The wave functions and energies in this case are

ψkxðxÞ ¼ 1ffiffiffi
L

p eikxx

εkx ¼ p2

2m
kx

2

The energies of these plane-wave wave functions are propor-
tional to kx

2, resulting in a parabola when energy is plotted with
respect to kx (Figure 1a).

In real crystal structures, electrons are of course not free. They
are subject to a periodic potential V(rB) created by the ions. Still,
the free-electron model often proves a useful starting point for
understanding crystalline electronic structure. Provided the
periodic potential is relatively weak on some scale, one can think
of the valence electrons in many real crystals as “nearly free”.
That is, the actual electronic wave functions and energies
resemble those of free electrons. For a 1-D crystal, we now begin
with the empty-lattice limit (where the potential tends toward
zero and the electrons tend toward free electrons) and “turn on”
the potential.

Imagine that a periodic potential—for instance, that of
symmetrically spaced ion cores with repeat distance a along
the x-axis—is imposed on an otherwise free electron. The result
is a crystal of unit cell length a, whose band structure can be
concisely plotted within the first Brillouin zone (-π/a e kx e
π/a). Electronic states lying outside the first Brillouin zone can
be carried into it by subtracting a reciprocal lattice vector from
kx—in this case, an integral multiple of 2π/a. In the empty-lattice
limit, the resulting picture (Figure1b) approaches that of a free-
electron parabola appearing to fold over onto itself indefinitely.
An even more concise view of this band structure (Figure 1c)
uses an even smaller piece of reciprocal space, the irreducible
region of the first Brillouin zone (0e kxeπ/a). In the last panel
of this figure, each branch of the band structure is shown along
with the corresponding free-electron wave function.

The question we must now examine is how turning on the
potential of a 1-D chain of ions (i.e., nuclei plus core electrons)
perturbs the free-electron band structure shown in Figure 1c. As
the answer is derived in detail in most introductory solid-state
physics textbooks,85,86 we only outline it here.

When an electron is subject to the periodic potential of an ion
at every lattice point on the x-axis (i.e., every integral multiple of
a), solutions to the Schr€odinger equation are no longer pure
plane waves. By Bloch’s theorem, they can be written as functions
of the form Ψkx(x) = eikxxukx(x), where ukx(x) has the same
periodicity as the potential V(x) and can therefore be expressed
as a Fourier series of plane waves. Depending on the function
used to model the ionic potential, the exact form of the wave
functions and electronic energies can vary. However, the quali-
tative picture (Figure 2) is always the same. In large part, this
nearly free electron band structure remains similar to the empty-
lattice limit (Figure 1c). Far from the points kx = 0 and kx = π/a
(within the range of, say, 0.2π/a e kx e 0.8π/a), the bands
resemble a parabola folding over onto itself. Likewise, each wave
function within this range is dominated by the corresponding
free-electron plane wave. That is, states in the bottom band
resemble Ψkx(x) = (1/L1/2)eikxx, states in the second band
resemble Ψkx(x) = (1/L1/2)ei[kx-(2π/a)]x, and states in the third
band resemble Ψkx(x) = (1/L1/2)ei[kxþ(2π/a)]x.

Near the points kx = 0 and kx = π/a, however, the nearly free
electron band structure looks quite different from the empty-
lattice limit.Where the empty-lattice limit has pairs of plane-wave
eigenstates whose energies approach degeneracy, the nearly free
electron case has eigenstates that are mixtures of those plane
waves whose energies are split. Take the two lowest-energy

Figure 1. (a) The energy of a free-electron plane wave with respect to
kx. (b) The band structure of the empty-lattice limit of a 1-D chain of
atoms, carried into the first Brillouin zone. (c) Another view of the
empty-lattice limit, confined to an irreducible piece of the first Brillouin
zone, with the wave function of each branch labeled.

Figure 2. The nearly free electron band structure of a 1-D chain of
atoms. While the wave functions and energies resemble their empty-
lattice analogs far from kx = 0 and kx = π/a, the wave functions and
energies near kx = 0 and kx = π/a reflect a mixing of plane-wave states
and a consequent energy splitting. Ions are shown as black circles.
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eigenstates at kx = π/a, for example. When a periodic potential
of ion-centered wells is turned on, the eigenstates resemble a
sum and a difference of two plane waves,Ψπ/a(x) = [1/(2L)

1/2]-
(ei(π/a)x þ e-i(π/a)x) = (2/L)1/2 cos[(π/a)x] and Ψπ/a(x) =
-[i/(2L)1/2](ei(π/a)x - e-i(π/a)x) = (2/L)1/2 sin[(π/a)x].
While the size of the energy splitting between these standing-
wave states depends on the strength of the ionic potential, the
fundamental reason for the splitting can be seen in the visual
representations of the two states on the right side of Figure 2. An
electron whose wave function is (2/L)1/2 cos[(π/a)x] resides
mostly near the ions, while an electron whose wave function is
(2/L)1/2 sin[(π/a)x] resides mostly between the ions. If the ions
were not there, the two levels would obviously be degenerate.
Provided the ions are taken to be positively charged, they have a
stabilizing interaction with negatively charged valence electrons,
and the former eigenstate (the one concentrating electron
density near the ions) is lower in energy than the latter.87

A similar splitting occurs at kx = 0. While the lowest-energy
state remains relatively unaffected by a weak external potential,
the two states above it mix. The free-electron plane waves
ψ0(x) = (1/L1/2)ei(2π/a)x and ψ0(x) = (1/L1/2)e-i(2π/a)x mix
to become a sum and a difference, the standing waves Ψ0(x) =
[1/(2L)1/2](ei(2π/a)x þ e-i(2π/a)x) = (2/L)1/2 cos[(2π/a)x]
and Ψ0(x) = -[i/(2L)1/2](ei(2π/a)x - e-i(2π/a)x) = (2/L)1/2

sin[(2π/a)x]. The former wave function is lower in energy than
the latter, again because its magnitude is larger near the ions.

This familiar nearly free electron band structure (Figure 2) is a
qualitative picture of the electronic σ-states in a 1-D chain of
atoms, derived from the starting point of plane waves. We now
derive the analogous picture from the starting point of localized
atomic orbitals and compare the two.

2.2. Starting with Atoms: The Chemical Viewpoint
In contrast to this physical viewpoint, which can approximate

electronic states as perturbations of free-electron plane waves,
the more chemical approach views them as linear combinations
of atomic orbitals. One of the simplest and most transparent
techniques utilizing this approach is the extended H€uckel (eH)
method.88 The eH method was the first widely applied semi-
empirical orbital procedure for molecules and was later applied to
extended structures.

The basis set in eH consists only of atomic valence orbitals (e.g.,
1s for H, 2s/2p for C, 4s/4p/3d for Fe), expressed in the form
φ(rB) = NR(r) Y(θ,j). Radial components of the basis s and p
orbitals are chosen as nodeless Slater functions, R(r) = rn-1e-ζr,
with exponents ζ chosen by Slater’s rules or to match optimized
atomic functions. So-called double-ζ functions, R(r) = rn-1

(c1e
-ζ1r þ c2e

-ζ2r), are used for d orbitals. Angular components
Y(θ,j) are chosen as the real form of spherical harmonics.
Constants N ensure that the functions satisfy the normalization
condition,

R
all spaceφ(rB) φ*( rB) dV = 1.

In amolecular calculation, the full molecular wave functions are
taken to be LCAO constructed form the atomic basis orbital:

Φjð rBÞ ¼ ∑
i
Cijφið rBÞ

The columns of coefficients Cij are eigenvectors of the following
secular equation:

HC ¼ εSC

In this equation,H is an effective one-electron Hamiltonian, and S
is the overlapmatrix.Matrix elements Sij=

R
all spaceφi(rB) φ j*(rB) dV

are the computed overlap integrals of the Slater-type basis
functions. In contrast to the normal H€uckel method, no over-
lap integrals are set to zero. The diagonal matrix elements Hii

are typically taken as valence-state ionization potentials. The
off-diagonal elements Hij are approximated by a Wolfsberg-
Helmholtz formula:

Hij ¼ K
Hii þHjj

2

� �
Sij

with a single parameter K = 1.75 for all interactions. The
molecular wave functions are normalized, and the corresponding
eigenvalues are the one-electron eH energies. In typical eH
calculations, there is no self-consistency.

Given its simplicity (only a few parameters differentiate the
various basis orbitals of distinct chemical elements), the eH
method (from now on we will refer to this approach descriptively
as LCAO) does remarkably well in getting the correct ordering of
energy levels in molecules and even the approximate energetics
of angular deformations. To put it another way, LCAO gets the
nodes in the right places in molecular orbitals. Extensive applica-
tions have shown the utility of the method for extended systems
as well. The methodology is unreliable for total energies, but is
transparent and uniquely well-adapted to generating one-elec-
tron perturbation theory-based explanations. It comes also with a
suite of analytical tools—overlap populations, fragment orbital
analysis, etc.—that is, to this day, unmatched in utility.

The application to extended systems is straightforward. Basis
orbitals are taken not as isolated Slater-type orbitals but as Bloch
functions of Slater-type orbitals. For a 1-D chain along the x-axis,
with atomic spacing a and each atom labeled with an integral
index n, these basis functions are (un-normalized) of the form
∑ne

ikxnaφn(rB). At a given kx, there is a basis Bloch function for
each valence atomic orbital in the unit cell. Therefore, when the
secular equation is solved (with overlap calculations usually
terminated at some long distance), the number of eigenfunctions
is also equal to the number of valence atomic orbitals in the
unit cell.

The qualitative features of the LCAO band structure of the
1-D chain are largely independent of which element comprises
the chain. Here, the atoms are chosen to be carbon, with the
following atomic parameters: Hii(C 2s) = -21.4 eV, ζs = 1.625;
Hii(C 2p) = -11.4 eV, ζp = 1.625.88 As in the previous
subsection, our focus is only on σ-states. Thus, only 2s and 2px
orbitals are used as a basis.

The band structures of two different 1-D carbon chains are
shown in Figure 3.WhileC-Cbond lengths in diamond are 1.54Å,
nearest neighbors in these chains are placed at distances of 2.2 Å
(Figure 3a) and 1.9 Å (Figure 3b). The large spacings are chosen
to simulate relatively weak atomic orbital interactions. Each band
structure has two bands reflecting the two basis orbitals (2s and
2px) on each atom, with the bottom band sloping upward and the
top band sloping downward.89 The bands in the 1.9 Å chain
spread over a larger range of energies, because the shorter
interatomic spacing leads to stronger bonding and antibonding
interactions.

Also shown in Figure 3 are cartoons of the crystal orbitals
themselves, which display s orbitals as isolated circles and p
orbitals as pairs of ovals. For ease of representation, we show the
crystal orbitals only at kx = 0 and kx = π/a. At other values of kx,
the atomic orbitals have complex coefficients and are there-
fore more difficult to represent. At kx = 0, in both chains, the
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lower-energy orbital is the bonding combination of 2s orbitals
and the higher-energy orbital is the antibonding combination of
2px orbitals. At kx = π/a, there is a significant difference between
the electronic states of the two chains. In the 2.2 Å chain
(Figure 3a), the antibonding combination of 2s orbitals is lower
in energy than the bonding combination of 2px orbitals. We refer
to this ordering (s antibonding below p σ-bonding) as the normal
region, as it is what we are used to seeing in diatomic molecular
orbital diagrams. In the 1.9 Å chain (Figure 3b), we see the
opposite ordering. We call this the inverted region. In other words,
when the interatomic spacing is short enough, the strength of the
bonding and antibonding interactions can overcome the inherent
difference in energy of 2s and 2p orbitals. Both of these regions
are seen in certain experimental crystal structures.91 We discuss
the importance of the distinction, along with similarities and
differences between the LCAO band structures and their nearly
free electron counterpart, in the next subsection.

2.3. Different Viewpoints, Synergistic Conclusions
We have now examined the band structure of a 1-D chain of

atoms using two very different approaches. It is reassuring to note
that the band structures depicted in Figures 2 and 3 bear striking
similarities. In both cases, the lowest-energy band slopes upward

and the second band slopes downward. Even the wave functions
themselves look similar. The LCAO orbitals at kx = 0, the most
bonding combination of 2s and the most antibonding combina-
tion of 2px, closely approximate the corresponding functions
Ψ0(x) = 1/L1/2 and Ψ0(x) = (2/L)1/2 sin[(2π/a)x] in the
nearly free electron picture. Similarly at kx =π/a, the antibonding
combination of 2s and the bonding combination of 2px resemble
the nearly free electron wave functions Ψπ/a(x) = (2/L)1/2

cos[(π/a)x] and Ψπ/a(x) = (2/L)1/2 sin[(π/a)x].
There are some differences between the band structures in

Figures 2 and 3 as well. While the nearly free electron model
predicts an infinite number of bands of electronic states rising to
infinitely high energies, the LCAO band structure is limited to
the same number of bands as there are atomic valence orbitals in
the unit cell. If the valence set were extended (say, to include 3s,
3p, and 3d), one would see more bands. The second difference,
the one mentioned earlier, is in the ordering of states at kx = π/a.
While the nearly free electronmodel produces a band structure in
the normal region (provided the ions are taken to be positively
charged), the LCAO model can produce a band structure in
either the normal or inverted region, depending on the element
and the interatomic spacing (which dictate overlap and thus band
dispersion).

Despite the differences, the feature of these band structures
that is most significant to the remainder of this paper is identical
in both cases. In both the nearly free electron and LCAO pictures
(and in both the normal and inverted regions), there is an energy
gap between the lowest-energy band and the second band, with
no states lying between the two. Furthermore, in both cases, this
gap is caused by the splitting of two states at kx = π/a that
resemble standing waves whose wavelength is twice the inter-
atomic spacing.

On the basis of this gap, one might predict that it would be
energetically favorable for such a (hypothetical) 1-D chain to
have two valence electrons per atom in states of σ-symmetry. If
this were the case, all the lower-energy states below the gap
would be filled, while all the higher-energy states above the gap
would be empty. Indeed, this is the situation of maximum σ-
bonding in a chain of main-group atoms. This is not to say that,
when all orbitals are included (this simplified model omits π-
orbitals) and pairing (Peierls) distortions allowed, the systemwill
remain a simply bonded infinite chain.

Be that as it may, the underlying assumption that an energy gap is
a favorable separator of filled states fromempty states is implicit in all
electron-counting rules inmolecules, from the octet and 18-electron
rules to H€uckel’s rules and Wade’s rules. The assumption is also
implicit in Mott and Jones’s (MJ) electronic justification of the
Hume-Rothery rules in solids, which is the focus of the next section.

3. THE MOTT AND JONES MODEL

The MJ model,41,42 which was first developed in the 1930s,
provides a theoretical rationale for the valence electron counts in
a number of Hume-Rothery electron phases. For those unfami-
liar with themodel, we introduce it by example, again using the σ-
states of a 1-D chain of main-group atoms. As the model is
generally presented from a nearly free electron viewpoint, in
terms of the mixing of plane-wave electronic states, we too begin
by presenting it this way.

The arrangement of ions in a 1-D chain along the x-axis has
two consequences that are important to MJ reasoning. One has
already been discussed and is reiterated in Figure 4a, which

Figure 3. The LCAO band structure of a 1-D chain of carbon atoms
separated by (a) 2.2 Å and (b) 1.9 Å. With the change in interatomic
spacing, the energy ordering of the antibonding combination of 2s
orbitals and the bonding combination of 2p orbitals at kx =π/a can lie in
either the normal or inverted region (see the text).
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employs the extended zone scheme so the bands resemble a free-
electron parabola. The periodic potential causes free-electron
plane-wave states of the form ψkx(x) = (1/L1/2)eikxx to mix. This
in turn creates energy gaps within the free-electron parabola by
separating states whose electron density resides near the ions
from states whose electron density resides between the ions. The
lowest-energy splitting corresponds to the strong mixing of the
kx ≈ π/a states with the kx ≈ -π/a states.92

Working under the assumption that a compound will adopt a
structure for which the Fermi level resides in such an energy gap,
this nearly free electron reasoning allows one to predict how
many σ-electrons are likely to be in such a chain (if it exists as a
real crystal). In this case, the states-π/ae kxeπ/a are likely to
be filled, and the others empty. As this is one unit cell of the
reciprocal lattice, it translates to one filled valence σ-orbital or
two valence σ-electrons, per unit cell. With just a single atom in
the unit cell, the predicted valence σ-electron count for this 1-D
chain is two electrons per atom.

The second important consequence of the periodic arrangement
of atoms relates not to the energies of electrons but to their ability to
scatter X-rays and thus create diffraction peaks. For a 3-D crystal, the
relative intensities of X-ray peaks obey the proportionality

IΔ kB �

�����∑j fjðΔkBÞeiΔ kB 3 rBj

�����
2

In this summation over every atom in the crystal, fj(ΔkB) are
the atomic form factors of each atom, and rBj are the spatial
coordinates of each atom. In order for constructive interference
to occur, ΔkB must be a reciprocal lattice vector, traditionally
expressed in the form haB*þ kbB*þ lcB* (a sum of integermultiples
of the reciprocal lattice basis vectors). In our 1-D crystal, because
the scattering factor of each atom is identical and all atoms lie on
the x-axis, the proportionality can be simplified as follows:

IΔ kB �

����� f ðΔkBÞ∑
j
eih 2π=að Þxj

�����
2

Knowing that the atoms in this chain are found at every integral
multiple of a, one can verify that there are strong diffraction peaks
corresponding to every integral value of h. The X-ray diffraction
pattern of the 1-D chain, with the undiffracted beam (the h = 0
peak) omitted, is shown in Figure 4b.

The importance of X-ray diffraction peaks to theMJmodel lies
in the deep connection between part a and b of Figure 4. It is not a

coincidence that each diffraction peak in Figure 4b is shown
directly below an energy splitting in Figure 4a. The two
phenomena arise for closely related reasons. X-ray diffraction
peaks come about when the atoms in a crystal sync up with the
crests of a diffraction plane wave. Because the atoms in this 1-D
chain lie a units apart in x, they interfere constructively with
diffraction plane waves of wavelength a (h =(1), a/2 (h =(2),
a/3 (h = (3), etc. Likewise, energy splitting in the nearly free
electronmodel arises when the atoms in a crystal sync upwith the
periodicity of free-electron plane waves (recall Figure 2). With
the atoms in this chain a units apart in x, there are energy
splittings between free-electron states of wavelength 2a (kx =
(π/a), a (kx = (2π/a), 2a/3 (kx = (3π/a), etc.

What this means is that the X-ray diffraction pattern of a
crystal, which is generally used to determine atomic positions,
also contains information about the electronic band structure
and the especially favorable valence electron counts. Let us
review the MJ logic for the 1-D chain. Because the atoms are
spaced a units apart in x, the strongest diffraction peaks corre-
spond to h = (1. The atomic spacing also results in the strong
mixing of free-electron plane waves of wavelength 2a (kx= (π/a)
and, consequently, an energy splitting and a gap in the density of
states. If a compound adopts this structure, it likely does so in
order to place its Fermi level in this gap, which would mean the
nearly free electron statesΨkx(x) are filled for-π/ae kxe π/a
and empty for all other kx (see Figure 4a). This region of filled
states is 2π/a units of reciprocal space or a single unit cell of the
reciprocal lattice. It translates to one valence σ-orbital per unit
cell, two valence σ-electrons per unit cell, or two valence σ-
electrons per atom.

The connection between X-ray diffraction patterns and
conditions for stability has been consistently used in recent
studies of structure under pressure by several groups, notably
Degtyareva.93-95 The thematic underpinnings of the method are
explored in a recent paper by Feng et al.96

4. MOVING TOWARD COMPLEXITY

As we will soon see, both the MJ model and our orbital
interpretation of it hold even in much more complicated
structures in 3-D space. For certain kB-vectors corresponding
to strong X-ray diffraction peaks, there is an energy splitting
between two electronic states caused by, depending on your
viewpoint of choice, the mixing of two free-electron plane waves
or the inherent difference between states of primarily s and p
character. For very complicated band structures, however, the
trick is finding these two electronic states, which are hidden
within a large number of bands. When there are on the order of
1000 bands in a band structure, as there are for an LCAO (or
plane-wave DFT) calculation of the primitive unit cell of a γ-
brass superstructure with the full complement of valence orbitals,
fishing out two hidden bands of interest sounds almost hopeless.

Our goal is to do just that. From a huge number of bands, we
will tease out the few features that actually drive these complex
crystal structures to be stable at their experimentally observed
electron counts. We first demonstrate our technique on a
structure that, while still not very complicated, eases the transi-
tion into 3-D space.

4.1. β
0
-CuZn and Its Band Structure

The first 3-D phase we discuss is β
0
-CuZn, an ordering of β-

brass that forms at high temperatures.97 β
0
-CuZn (henceforth

referred to simply as CuZn) has the well-known CsCl-type

Figure 4. (a) The nearly free electron band structure of a 1-D chain of
atoms, shown in the extended zone scheme. (b) The X-ray diffraction
pattern of the same chain, emphasizing the correspondence between
energy splittings and diffraction peaks.
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structure—a cubic unit cell of edge length a, with an atom of one
type at (0, 0, 0) and an atom of the other type at (a/2, a/2, a/2).
CuZn will serve as a stepping stone to the more complex Cu5Zn8
(γ-brass) and its relatives.

Taking the Cu and Zn 3d states to be filled core orbitals, CuZn
has a valence electron count of 3/2 electrons per atom. This
electron count is common among CsCl-type intermetallic
phases,98 shared by LiHg, BeCu, MgAg, MgAu, ZnAg, ZnAu,
CdAg, CdAu, AlPd, AlPt, and GaNi.99 We wish to explore the
evidence for a MJ-type driving force behind this electronic trend.

The validity of the MJ model rests on the validity of the nearly
free electron model. We therefore expect that a crystal structure
amenable to the MJ model must have electronic states and
energies resembling those of free electrons. Indeed, CuZn does.
The shapes of the free-electron (Figure 5a) and LDA-
DFT100-104 (Figure 5b) electronic bands bear a striking resem-
blance. With the exception of the localized Zn and Cu 3d bands
centered at -8 and -4 eV in Figure 5b, each band in the LDA-
DFT band structure has a free-electron analog.

Of course, there are subtle differences between these two band
structures. Most important to the discussion that follows is what
occurs at k-point M = (π/a, π/a, 0). In the free-electron band
structure, the four lowest-energy electronic states at k-point
M are degenerate. They correspond to four waves of equal
wavelength, ψM(rB) = (1/V1/2)ei(π/a,π/a,0) 3 rB, ψM(rB) =
(1/V1/2)ei(-π/a,-π/a,0) 3 rB, ψM(rB) = (1/V1/2)ei(-π/a,π/a,0) 3 rB,
and ψM(rB) = (1/V1/2)ei(π/a,-π/a,0) 3 rB, where rB is the real-space
position. In the LDA-DFT band structure, these states become
two pairs, one degenerate and the other nearly degenerate. The
pairs straddle the Fermi energy and are separated by some 4 eV.

It is not a coincidence that the Fermi energy lies within this
particular energy splitting. The splitting pushes states out of the
energy region from about-2 to 2 eV, which translates to a shallow
pseudogap in the density of states (perhaps more easily seen in the
band structure than in the DOS) that reaches a minimum close to 2
eV (Figure 5c). In the absence of a true energy gap, a compound is

likely to adopt a structure that places its Fermi level in a pseudogap,
as this one does. As we discuss in the next subsection, these
observations of the CuZn band structure are consistent with the
MJ model as traditionally implemented.

4.2. What the MJ Model Has to Say About CuZn
From our earlier discussion of the 1-D chain, recall that there are

two related consequences of constructive interference between
crystalline ions and plane waves. One is X-ray diffraction intensity,
which emerges when atoms reside on parallel Miller planes. The
other is the mixing and energy splitting of free-electron states. In
Figure 6, both phenomena are illustrated for CuZn.

The most intense X-ray diffraction peaks in CuZn are Æ110æ—
the set of peaks corresponding to waves that are symmetry-
equivalent to h = 1, k = 1, l = 0 (Figure 6a). The reason for the
strength of these peaks can be seen pictorially in Figure 6b, as all
Cu (black) and Zn (gray) atoms in the structure lie on successive
crests of the Æ110æ diffraction plane waves (red). This arrange-
ment of atoms on parallel planes has the additional consequence
of causing free-electron states to mix (Figure 6c). As shown, two
free-electron states (with twice the wavelength of the Æ110æ
diffraction plane waves) mix to form one state whose electron
density is near the ions (Figure 6c, left) and a second state whose
electron density is between the ions (Figure 6c, right). Taking into
account the potential of the ions, these two states split in energy.

To fully appreciate what the MJ model says about CuZn,
consider where the states in Figure 6c reside in the band
structures in Figure 5. These two states are a mixture of the
free-electron plane waves ψM(rB) = (1/V1/2)ei(π/a,π/a,0) 3 rB =
(1/V1/2)ei(π/a)(xþy) and ψM(rB) = (1/V1/2)ei(-π/a,-π/a,0) 3 rB =
(1/V1/2)e-i(π/a)(xþy), which are found at k-pointM = (π/a,π/a,
0) in the band structures. After mixing, these wave func-
tions resemble ΨM(rB) = [1/(2V)1/2](ei(π/a)(xþy) þ
e-i(π/a)(xþy)) = (2/V)1/2 cos[(π/a)(xþ y)] (Figure 6c, left) and
ΨM(rB) = -[i/(2V)1/2](ei(π/a)(xþy) - e-i(π/a)(xþy)) =
(2/V)1/2 sin[(π/a)(x þ y)] (Figure 6c, right). Not shown in
Figure 6 are another pair of states, also at k-point M, correspond-
ing to the 110 diffraction plane wave. After mixing, they resemble
the functions ΨM(rB) = (2/V)1/2 cos[(π/a)(-x þ y)] and
ΨM(rB) = (2/V)1/2 sin[(π/a)(-x þ y)].

We can now rationalize our earlier observations of the band
structure of CuZn (Figure 5). At k-point M, four degenerate
free-electron states (1/V1/2)ei(π/a)(xþy), (1/V1/2)e-i(π/a)(xþy),

Figure 5. (a) The free-electron band structure of CsCl-type CuZn, (b) its
LDA-DFT counterpart, and (c) the LDA-DFT density of states. At k-point
M, states that are degenerate in the free-electron picture become non-
degenerate in LDA-DFT, which leads to a shallow pseudogap in the density
of states near the Fermi energy. The k-points correspond to Γ = (0, 0, 0), X
= (π/a, 0, 0), M = (π/a, π/a, 0), and R = (π/a, π/a, π/a). On the energy
axis of the LDA-DFT panels, the Fermi energy is defined as zero.

Figure 6. (a) The strongest peaks in the [110] X-ray diffraction pattern of
CuZn. (b) Crests of the Æ110æ diffraction plane waves (red), with all Cu
(black) andZn (gray) atoms lying on those crests. (c) Thenearly free electron
states whose periodicity syncs up with the Æ110æ diffraction plane waves.
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(1/V1/2)ei(π/a)(-xþy), and (1/V1/2)e-i(π/a)(-xþy)) mix to form
four nearly free electron states {(2/V)1/2 cos[(π/a)(xþ y)], (2/
V)1/2 sin[(π/a)(xþ y)], (2/V)1/2 cos[(π/a)(-xþy)], and (2/
V)1/2 sin[(π/a)(-x þ y)]}. The latter four states come in two
pairs, one of which has its electron density near the ions and the
other of which has its electron density between the ions. This
leads to an energy splitting, made possible by the same arrange-
ment of atoms on parallel planes that also results in strong Æ110æ
X-ray diffraction peaks. The energy splitting (Figure 5b) in turn
leads to the pseudogap (and stable valence electron count around
3/2 electrons per atom) in Figure 5c.

Beforemoving on, onemore point should be clarified. In order
to be formally correct about the mixing of these free-electron
states [(1/V1/2)ei(π/a)(xþy), (1/V1/2)e-i(π/a)(xþy), (1/V1/2)
ei(π/a)(-xþy), and (1/V1/2)e-i(π/a)(-xþy)], one would have to
consider all four to mix together, rather than pairwise. However,
the pairwisemixing we have illustrated, in addition to being easier
to visualize, is qualitatively accurate. Strong energy splitting of
free-electron states can occur only when the states are separated
by a reciprocal lattice vector, corresponding to a significant
Fourier component (i.e., a strong X-ray diffraction peak), as this
creates states whose electron density is either near or between
ions. Because CuZn has strong Æ110æ peaks, the states corre-
sponding to (π/a, π/a, 0) and (-π/a,-π/a, 0) mix strongly, as
do those corresponding to (-π/a, π/a, 0) and (π/a,-π/a, 0).
However, because the Æ100æ peaks are nearly absent (they would
be formally absent if Cu and Zn atoms were identical and/or
randomly mixed in the structure), other pairs of these free-
electron states do not mix strongly. Our pairwise picture is
therefore qualitatively accurate for CuZn.105

4.3. Finding Hidden Plane Waves in CuZn
The evidence in the previous subsection is all consistent with

the MJ model for CuZn. However, all of the evidence is indirect.
Without actually performing a calculation that allows us to look at
the electronic states in CuZn, we cannot really prove that the
splitting of free-electron waves is driving the stability of the valence
electron count. The chemical reality of this system, as it turns out,
is not quite as clean as the plane-wave story presented above.

In examining the electronic structure of CuZn more closely,
we again employ eH theory as the simplest LCAO model. This
method is both computationally cheap and chemically transpar-
ent, expressing crystalline electronic states as LCAO whose
energies are shaped by bonding and antibonding interactions.
The drawback of the extended H€uckel implementation of LCAO
is that, if one is not careful in choosing atomic parameters, the
results of an LCAO calculation may bear little resemblance to
more quantitatively reliable calculations. For this reason, we
calibrate the LCAO parameters of Cu and Zn to match the LDA-
DFT band structure of CuZn, using an automated optimization
procedure to find the best fit. This method has proven reliable in
the past.8,17,68,106-108

The LDA-DFT and LCAO band structures of CuZn are
superimposed in Figure 7, with the Fermi energy defined as zero
in both. For the bands that are filled, the LCAO bands (green)
match their LDA-DFT counterparts (black) quite well. This
suggests that these LCAO parameters represent the chemical
reality of the system as accurately as possible. The calibrated
atomic parameters for the Slater-type orbitals in this calculation
are Hii(Cu 4s) = -11.63 eV, ζs = 1.80; Hii(Cu 4p) = -5.72 eV,
ζp = 1.625;Hii(Cu 3d) =-11.94 eV, ζ1,d = 6.93, ζ2,d = 2.02, c1,d =
0.7234, c2,d = 0.7962; Hii(Zn 4s) =-12.71 eV, ζs = 1.92; Hii(Zn

4p) =-7.84 eV, ζp = 1.55; Hii(Zn 3d) =-15.95 eV, ζ1,d = 6.82,
ζ2,d = 2.26, c1,d = 0.7582, c2,d = 0.5730. These parameters will be
used for the remainder of our discussion of CuZn.

Armed with a quantitatively accurate band structure calcula-
tion that allows us to view the electronic states of CuZn as linear
combinations of atomic orbitals, we are ready to search for the
wavelike electronic states on which the MJ model focuses. In the
earlier case of the 1-D chain, comparison between the nearly free
electron (Figure 2) and LCAO (Figure 3) band structures was
straightforward because each individual LCAO crystal orbital had
an obvious wave analog. The case is not quite so simple for real
3-D structures. Each nearly free electron wavelike state, rather
than having a single LCAO crystal orbital analog, is mixed into
many LCAO states. If we wish to use an LCAO calculation to
confirm, rather than simply infer, the validity of the MJ model for
real chemical structures, we must develop a strategy to break
down an LCAO band structure into its relevant plane waves. We
do so in this subsection.

The difference between nearly free electron and LCAO
electronic states is largely a matter of basis set—the former are
sums of plane waves, while the latter are sums of atomic valence
orbitals. In principle, the two basis sets can be interconverted.
That is, plane waves can be expressed as sums of valence orbitals,
and vice versa. Our strategy is outlined as follows: (1) express the
states in a nearly free electron MJ band as sums of LCAO crystal
orbitals, (2) assign energies to those nearly free electron states as
weighted averages of the LCAO energies, and (3) plot the energy
of the MJ band hidden within the structure. In this way, we can
start with a complicated LCAO band structure and tease out the
information relevant to the MJ model.

Free-electron plane-wave states have the formψ kB(rB) = (1/V
1/2)

eikB 3 rB. Nearly free electron states ΨkB( rB) are mixtures of these
plane waves. The translational symmetry of a crystal dictates that
mixing can only occur between waves separated by a reciprocal
lattice vector GB:

Ψ kBð rBÞ ¼ 1ffiffiffiffi
V

p ∑
GB
cGB,kBe

ið kB þ GBÞ 3 rB

The cGB,kB are complex coefficients of each component of the
nearly free electron state. As the nearly free electron model
requires that deviation from free-electron states is small, the
dominant component of each state (i.e., the one with the largest
magnitude cGB,kB) is the one corresponding to GB = (0, 0, 0).

Each normalized nearly free electron state ΨkB(rB) is then
expressed, as accurately as possible,109 as a linear combination of

Figure 7. The band structure of CuZn, calculated using LDA-DFT
methods (black) and LCAOmethods with atomic parameters calibrated
to the LDA-DFT band structure (green). For bands that are filled, the
energies calculated by the two methods are quite close. For both
methods, the Fermi energy is defined as zero.
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the full set of normalized LCAO wave functions Φi,kB(rB) at the
same k-point:

Ψ kBð rBÞ ¼ ∑
i
pi, kBΦi, kBð rBÞ

The coefficients pi in the above equation are projections of the
nearly free electron state onto each LCAO wave function:

pi, kB ¼
Z
unit cell

Ψ kBð rBÞΦi, kB � ð rBÞ dV

In the second step of the process, an energy ε(kB) is assigned to
each nearly free electron stateΨkB(rB). The energy is taken to be
the weighted average of the energies εi,kB of the constituent
LCAO crystal orbitals:

εðkBÞ ¼
∑
i
εi, kBjpi, kBj2

∑
i
jpi, kBj2

The final step is to plot the energy of the projected MJ band.
Recalling that the significant feature of this plot (an energy
splitting that corresponds to the strong Æ110æ X-ray diffraction
peaks) is expected at k-point M = (π/a, π/a, 0), this plot is
constructed along a straight path from kB = (0, 0, 0) through kB =
(π/a, π/a, 0). However, we must first take a brief step back and
explain how the coefficients cGB,kB are determined.

In principle, each nearly free electron stateΨkB(rB) is the sum of
an infinite number of plane-wave terms. Fortunately, very few of
these terms make a significant contribution. A plane wave whose
reciprocal lattice vector GB corresponds to an intense X-ray diffrac-
tion peak mixes strongly into the sum only if its energy is similar to
that of the dominant GB = (0, 0, 0) term—that is, if

|kB þ GB| ≈ |kB|. For most of our path through k-space—all but a
small range close to kB = (π/a, π/a, 0)—there is no term close in
energy to theGB = (0, 0, 0) term. Thus, far from kB = (π/a, π/a, 0),
the nearly free electron states approachΨrB(rB) = (1/V1/2)eikB rB.

The situation is different close to kB = (π/a, π/a, 0). The GB =
(0, 0, 0) and GB = (-2π/a, -2π/a, 0) terms become close in
energy, which means the nearly free electron states must be
expressed as Ψ kB(rB) = (1/V1/2)(c1e

i 3 kB rB þ c2e
i(kBþ(-2π/a,-2π/

a,0)) 3 rB). On the “near” side of kB = (π/a,π/a, 0) [at kB = (0.99π/a,
0.99π/a, 0), say], the GB = (-2π/a, -2π/a, 0) term is higher in
energy than the dominant term.We therefore expect thismixing to
push the state to a lower energy, and we choose the c1 and c2 that
result in the lowest energy. On the “far” side of kB = (π/a, π/a, 0)
[at kB = (1.01π/a, 1.01π/a, 0), say], the reverse is true. The GB =
(-2π/a, -2π/a, 0) term is lower in energy than the dominant
term and pushes the state up in energy. We choose the c1 and c2
that result in the highest energy.

In Figure 8a, the projected MJ band (red) is plotted on top of
the calibrated LCAO band structure (black), with a satisfying
result. The MJ band resembles a nearly free electron parabola,
with an energy splitting of 2.74 eV at M = (π/a, π/a, 0), the k-
point corresponding to the strong Æ110æ X-ray diffraction peaks.
The two projected states at M (red circles at-1.80 and 0.94 eV)
straddle the Fermi energy, further suggesting that the splitting
does indeed help to stabilize CuZn at 3/2 valence electrons
per atom.

These two projected states at M are shown in Figure 8b,c as
contours of their component s and p atomic orbitals.110 Both
states resemble their nearly free electron wave analogs, shown
lightly in the background. The higher-energy state (Figure 8b) is
primarily a combination of s orbitals, and the lower-energy state
(Figure 8c) a combination of p orbitals. This ordering is
representative of the inverted region, as defined earlier for a
1-D system. Though the ordering could have been reversed for
different atomic or unit cell parameters, the energy splitting in the
projected band would have been present regardless.

In contrast to Figure 8, which focuses on the wavelike
character of the projected states at M, Figure 9 examines their
local atomic orbital interactions. The projected states are shown
from a viewpoint slightly offset from our usual one, from which

Figure 8. (a) The LCAO band structure of CuZn (black) and the
projected nearly free electron MJ band (red), plotted along a straight
path through k-space fromΓ= (0, 0, 0) throughM= (π/a,π/a, 0). (b, c)
The two projected crystal orbitals at M, expressed as contours of their
component s and p atomic orbitals, with the corresponding nearly free
electron waves shown lightly in the background. The energies of these
two states straddle the Fermi energy.

Figure 9. The local atomic orbital interactions of a Zn atom and its
nearest neighbors in the (a) higher- and (b) lower-energy projected MJ
states of CuZn atM = (π/a,π/a, 0). The higher-energy state is primarily
a nonbonding combination of s orbitals, while the lower-energy state is
primarily a bonding combination of p orbitals.
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we can see a Zn atom and its cube of eight nearest-neighboring
Cu atoms. In the higher-energy state (Figure 9a), the central
atom interacts with four of its neighbors in a σ-bonding manner
and four in a σ-antibonding manner, resulting in a roughly
nonbonding crystal orbital. In the lower-energy state
(Figure 9b), the central atom interacts with four of its neighbors
in a π-bonding manner and four in an approximately nonbond-
ing manner, resulting in a bonding crystal orbital. The corre-
sponding pictures showing the local coordination of a Cu atom
would look almost identical.

4.4. Energy Splitting at Other k-Points in CuZn
While the projected band, its energy splitting, and its wavelike

LCAO states in Figure 8 further support the MJ view of CuZn,
they should still be met with a healthy dose of skepticism. One
shortcoming of the argument presented in the previous subsec-
tion is that it examines the energy splitting of the projected MJ
band at only one k-point, M = (π/a, π/a, 0). If such splittings
were found only at individual isolated k-points, then they would
lead to a negligible pseudogap in the density of states. In order to
argue that such splittings lead to a substantial pseudogap, we
must show that they occur at a continuum of k-points.

At which k-points should we expect to find these energy
splittings? Recall that in order for two plane-wave electronic states
ψkB1

(rB) = (1/V1/2)eikB1 3 rB and ψkB2
(rB) = (1/V1/2)eikB2 3 rB to mix and

split, they must be separated by a reciprocal lattice vectorGB and be
of equal energy. In symbols, these two conditions become

kB1 þ GB ¼ kB2

jkB1j ¼ jkB2j
In order for the resulting energy splitting to be large, there is the

additional requirement that GB correspond to a strong X-ray
diffraction peak. As the strongest peaks for CuZn are Æ110æ, GB
can be any permutation of(2π/a,(2π/a, and 0. This ensures that
once ψkB1

(rB) and ψkB2
(rB) mix, one wave function has its electron

density concentrated near the ions and the other between the ions.
Certainly, kB1 = (π/a, π/a, 0) and kB2 = (-π/a, -π/a, 0)

satisfy these conditions. These vectors represent the two waves
whose splitting is shown in Figure 8. However, the coordinates of
kB1 and kB2 need not be such round numbers. Consider the more
general vectors kB1 = (π/aþ R, π/a-R, β) and kB2 = (-π/aþ
R,-π/a-R, β), for any values ofR and β. They too satisfy all of
the above conditions for large energy splitting. The two degrees
of freedom, R and β, indicate that splitting occurs not just at
isolated k-points, but on 2-D planes of k-points. This idea has been
discussed in previous literature, in the language of mixing of
charge-density waves. In such terms, the vectors GB separating
parallel planes in reciprocal space are known as Fermi surface
nesting vectors.81,111

In the reciprocal space of CuZn, there are 12 planes that satisfy
the conditions for large energy splitting. These planes intersect to
form the polyhedron in Figure 10a. The polyhedron constructed
in this way is often called the Jones zone and is in this case
equivalent to the first Brillouin zone of the bcc structure. To a
first approximation, the Jones zone can be used to estimate the
likely electron count for β-brass alloys and CsCl-type interme-
tallics. The nearly free electron states ΨkB(rB) inside the zone lie
below the energy splitting and are filled, while those outside the
zone lie above the energy splitting and are empty. The reciprocal-
space volume of the Jones zone thus represents the number of
filled valence orbitals per unit cell. The volume in this case is

2(2π/a)3 or two unit cells of the reciprocal lattice. This translates
to two filled valence orbitals per unit cell, four valence electrons
per unit cell, or two valence electrons per atom.

While this estimate is in the right ballpark (though signifi-
cantly higher than Hume-Rothery’s observation of 3/2 valence
electrons per atom for β-brass), the argument used to derive it
has a notable flaw. Namely, the surface in Figure 10a is not a
sphere. It has some points that jut out farther from the origin than
others. Because the energy of a plane-wave electronic state is
proportional to |kB|

2, splitting occurs at a higher energy for those
k-points that are farther out. It is therefore possible that the top of
the splitting at (for example) kB = (π/a,π/a, 0) is lower in energy
than the bottom of the splitting at (for example) kB= (2π/a, 0, 0).
This possibility must be explored, as it would argue against the
above assumption that states are filled if and only if they lie inside
the Jones zone.

We therefore calculate the energies at the top and bottom of
the splitting over the entire polyhedral surface. Only one of the
12 symmetry-equivalent faces (Figure 10b) need be calculated.
The result is shown in Figure 11a. As expected, the energy curves
of both the top (gray) and bottom (black) of the splitting
resemble paraboloids with respect to kB. We see that our concern
was justified—the top of the splitting at kB = (π/a, π/a, 0) is
indeed lower in energy than the bottom of the splitting at kB =
(2π/a, 0, 0). As a result, the Fermi energy (red) cannot lie within
the gap for all k-points on the Jones zone surface simultaneously.

In the absence of a true energy gap between the top and
bottom paraboloids in Figure 11a, the Fermi energy is likely to be
found in a pseudogap. One might reasonably guess that such a
pseudogap would be centered at an energy that lies within the
splitting for most of the Jones zone surface. Translated into the
language of Figure 11a, the “ideal” number of electrons for this
system would place the Fermi energy (red plane) between the
gray and black paraboloids for as much of the illustrated area of
reciprocal space as possible. By inspection, this is accomplished
when the Fermi energy just touches the bottom of the gray
paraboloid, 0.94 eV above the actual Fermi energy. This estimate
is confirmed in Figure 11b. Integrating the density of states up to
this energy predicts that the “ideal” electron count for CuZn is
1.77 valence electrons per atom.

Of course, there are several caveats to the electron count at
which the previous paragraph arrives. The first is that our

Figure 10. (a) The surface that separates the CuZn nearly free electron
states that are above the energy splitting (outside the Jones zone) from
those that are below it (inside the Jones zone). (b) One face of the Jones
zone, symmetry-equivalent to all the others.



K dx.doi.org/10.1021/cr1001222 |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

definition of “ideal” says little of how well the structure competes
with others. Whether a structure forms at a given electron count
depends not only on its own electronic properties, but on those of
all competing structures. So even if CsCl-type CuZn has a
pseudogap that favors 1.77 valence electrons per atom, it might
have to compete with other possible structures that favor the same
electron count. Second, the exact placement of this “ideal” electron
count is not general for CsCl-type compounds and depends on the
atomic and unit cell parameters. For example, if the energy splitting
in Figure 11a were wider, the “ideal” electron counts would move
closer to 2. The third caveat is that the pseudogap in CuZn is not
very deep. Because the Jones zone (Figure 10a) has vertices that
jut out sharply, the top and bottom of the energy splitting
(Figure 11a) are not fully separated.

Mott and Jones, in their analysis of the β-brass structure,
adopted a slightly different criterion for determining the “magic”
electron count. Rather than assuming electrons fill a polyhedron,
as we do (Figure 10a), they assumed electrons fill the inscribed
sphere.41,42 Their method leads to an electron count of 1.48

valence electrons per atom. As our discussion shows, there is no
unique way to define the “optimum” filling—only a range of
electron counts. The literature following Mott and Jones has
discussed at some length the effects of subtly different electron
fillings relative to the polyhedron we use.43 The question
becomes even more subtle when one considers that thermo-
dynamic stability must be judged relative to other possible
structures. As the relative stabilities of metallic crystal structures
have been captured using H€uckel theory,112 we suspect they are
also within the scope of our reasoning.

This concludes our discussion of CuZn, with reasonable
results but an interesting and real ambiguity. We have adapted
the MJ model to chemical ways of looking at the electronic
structure of extended systems and confirmed the observed range
of stability between 1 and 2 valence electrons per atom in β-brass
alloys and CsCl-type intermetallics. However, it emerges that for
this particular structure, the “ideal” electron count is imprecise
and element-dependent. As the remainder of this work will show,
increasing complexity can actually sharpen an intermetallic
structure’s preference for a particular electron count.

5. CRYSTAL STRUCTURES OF THE γ-BRASSES

At a slightly higher Zn concentration than β-brass lies γ-brass.
The γ-brass region of the Cu-Zn phase diagram includes the
ordered intermetallic Cu5Zn8.

3 Taking the Cu and Zn 3d states
to be filled-core orbitals, Cu5Zn8 has a valence electron count of
21/13 electrons per atom. Cu5Zn8 has a considerably more
complex structure than CuZn. It is worth noting, however, that
the two are related. The atomic positions of a 3� 3� 3 supercell
of CuZnwith vacancies at its vertices and center differ from those
of Cu5Zn8 only by small distortions. Crystallizing with I43m
symmetry, the cubic unit cell of Cu5Zn8 is traditionally seen as a
body-centered arrangement of two identical 26-atom clusters.
These clusters, termed γ-brass clusters, are in no way chemically
isolated and “exist” only as visual mnemonics.

A γ-brass cluster can be viewed in a number of ways. Perhaps
the most common view (Figure 12a) is of four nested polyhedra,
one for each crystallographically inequivalent site. From the
cluster center to the periphery, these polyhedra are an inner
tetrahedron (IT), an outer tetrahedron (OT), an octahedron
(OH), and a cuboctahedron (CO). An alternative view
(Figure 12b), more suggestive of the experimental site prefer-
ences, connects the OT and OH sites (Cu atoms in Cu5Zn8) as
an adamantane-like cage and the IT and CO sites (Zn atoms in
Cu5Zn8) as a tetrahedron of tetrahedra.17,113 The full 52-atom
cubic unit cell of Cu5Zn8 is shown in Figure 12c.

Cu5Zn8 is the parent structure of a number of even more
complicated superstructures, which we call 2 � 2� 2 γ-brasses.
As suggested by the name, these compounds have cubic unit cells
that resemble the Cu5Zn8 unit cell doubled in all three dimen-
sions. Each of these superstructures differs fromCu5Zn8 by some
combination of distortions, colorings, vacancies, and interstitial
atoms. Among the 2 � 2 � 2 γ-brasses that have been solved
using single crystal X-ray diffraction are Zn21Pt5,

18,33 Li21Si5,
27,28

Mg44Rh7,
20 Mg44Ir7,

19 Na6Tl,
21 Mg6Pd,

22 Cu41Sn11,
23,24

Sm11Cd45,
25 Zn39Fe11,

26 Al69Ta39,
29 Zn13(Fe, Ni)2,

30 Mg29Ir4,
31

Zn20.44Mo,32 Zn91Ir11,
34 and Li13Na29Ba19.

35 All of these struc-
tures crystallize with F43m symmetry. As the Cu5Zn8 unit cell
contains two γ-brass clusters and its superstructures represent a
doubling of the unit cell in all three dimensions, each unit cell
contains 16 similar clusters and roughly 400 atoms.

Figure 11. (a) The energies at the top (gray) and bottom (black) of the
splitting on one face of the Jones zone. (b) The area on the face for which
a given energy lies between the two paraboloids. Area is plotted in
arbitrary units.
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We wish to use MJ reasoning as the starting point for our
analysis of the γ-brasses. This requires knowledge of which X-ray
diffraction peaks are most intense. The strongest peaks in
Cu5Zn8 are Æ330æ and Æ114æ (Figure 13a). While the relative
intensities vary from system to system, the strongest peaks in 2�
2� 2 γ-brasses are generally Æ660æ, Æ228æ, and Æ555æ
(Figure 13b). There is an interesting story to be told about the
structural source of these strongest X-ray peaks. However, to
avoid interrupting this work with a lengthy diversion, we simply
take these diffraction patterns as given for now and save the full
diffraction pattern story for the Appendix.

6. REINTERPRETING THE MJ MODEL OF Cu5Zn8

The MJ model has long been the dominant theoretical
rationale for Hume-Rothery’s empirical observations of the
phase stability of γ-brass. According to the model, the alignment
of atoms with Æ330æ and Æ114æ plane waves splits the energies of
the corresponding nearly free electron states. Together, the
energy splittings create a pseudogap in the density of states,
stabilizing the crystal structure for a narrow range surrounding
the experimental electron count of Cu5Zn8, 21/13 valence
electrons per atom. To gain a more chemical understanding of
this electron-counting rule, we now use themachinery developed
in our earlier discussion of CuZn to reinterpret theMJ arguments
for Cu5Zn8 in terms of LCAO.

6.1. The Band Structure of Cu5Zn8 γ-Brass
MJ reasoning rests on the nearly free electron model. As

Cu5Zn8 has proven amenable to the MJ model, we expect its
band structure to resemble that of free electrons. The

resemblance, however, is more difficult to confirm by inspec-
tion for Cu5Zn8 (Figure 14) than it was for CuZn (Figure 5).

Figure 13. The strongest peaks in the [110] X-ray diffraction patterns
of (a) Cu5Zn8 and (b) Zn21Pt5, a 2 � 2 � 2 γ-brass.

Figure 14. (a) The free-electron band structure of Cu5Zn8, (b) its
LDA-DFT counterpart, and (c) the LDA-DFT density of states. Note
the pseudogap in the density of states near the Fermi energy. The k-
points with respect to the cubic cell correspond toΓ= (0, 0, 0), H = (2π/
a, 0, 0), N = (π/a, π/a, 0), and P = (π/a, π/a, π/a). On the energy axis
of the LDA-DFT panels, the Fermi energy is defined as zero.

Figure 12. (a) One view of a γ-brass cluster, showing an inner
tetrahedron (IT, yellow), an outer tetrahedron (OT, orange), an
octahedron (OH, red), and a cuboctahedron (CO, purple). (b) A
second view, more suggestive of the site preferences in Cu5Zn8, showing
an adamantane-like cage (Cu atoms, black) and a tetrahedron of
tetrahedra (Zn atoms, gray). (c) The cubic unit cell of Cu5Zn8,
emphasizing its body-centered arrangement of γ-brass clusters.
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The 26-atom primitive unit cell of Cu5Zn8 produces quite a
complicated picture, in which it is somewhat difficult to pick out
the individual parabolas. With some effort, though, one can see
similarities in the shapes of the free-electron (Figure 14a) and
LDA-DFT100-104 (Figure 14b) bands, especially below the
Fermi energy. Excluding the regions of localized Zn and Cu 3d
bands centered at -8 and -4 eV, each band in the LDA-DFT
band structure has a free-electron analog.

The density of states ofCu5Zn8 (Figure 14c) shows the hallmark of
an electron phase: a pseudogap very close to the Fermi energy. This
pseudogap, centered just above the Fermi energy, ismore pronounced
than the corresponding pseudogap in CuZn (Figure 5c).

In order to examine the source of this pseudogap and its relative
sharpness, we again turn to LCAO. To ensure the quantitative
accuracy of our LCAO calculation of Cu5Zn8, we calibrate the Cu
and Zn atomic parameters to match LDA-DFT. These two band
structures are superimposed in Figure 15, with the Fermi energy
defined as zero in both. The close match between LCAO (green)
and LDA-DFT (black) suggests that these LCAO parameters
accurately represent the chemical reality of the system. The
calibrated atomic parameters for the Slater-type orbitals in this
calculation areHii(Cu 4s) =-11.47 eV, ζs = 1.75;Hii(Cu 4p) =-
5.55 eV, ζp = 1.69;Hii(Cu 3d) =-11.95 eV, ζ1,d = 6.09, ζ2,d = 2.00,
c1,d = 0.6006, c2,d = 0.6873; Hii(Zn 4s) = -12.57 eV, ζs = 1.88;
Hii(Zn 4p) =-7.53 eV, ζp = 1.48;Hii(Zn 3d) =-16.02 eV, ζ1,d =
6.04, ζ2,d = 2.21, c1,d = 0.6161, c2,d = 0.5730. Not surprisingly, these
parameters, whichwill be used for the remainder of our discussion of
Cu5Zn8, are very similar to those used for CuZn.

6.2. Finding Hidden Plane Waves in Cu5Zn8
The strength of the Æ330æ and Æ114æ X-ray diffraction peaks

indicates that the atoms in Cu5Zn8 sync up with the corresponding
sets of Miller planes. According to the MJ model, this periodic
arrangement of ions causes free-electron plane-wave electronic states
(with twice thewavelength of the diffraction planewaves) tomix and
split in energy. The result, as we saw in our earlier discussion of
CuZn, is pairs of nearly free electron states in which one has its
electron density near the ions and the other between the ions.

Though the atoms in Cu5Zn8 are not as neatly aligned on
diffraction planes as those in CuZn, the expected wavelike states
(Figure 16) are qualitatively the same. Figure 16a shows a mixing
representative of the Æ330æ X-ray diffraction peaks. These two
states are a mixture of the plane waves ψN(rB) = (1/V1/2)
ei(3π/a,3π/a,0) = (1/V1/2)ei(3π/a)(xþy) and ψN(rB) = (1/V1/2)
ei(-3π/a,-3π/a,0) = e-i(3π/a)(xþy), which are found at k-point
N = (π/a, π/a, 0) with respect to the cubic unit cell. After
mixing, these wave functions resemble ΨN(rB) = [1/(2V)1/2]
(ei(3π/a)(xþy) þ e-i(3π/a)(xþy)) = (2/V)1/2 cos[3π/a(xþy)]
(Figure 16a, left) and ΨN(rB) = -[i/(2 V)1/2](ei(3π/a)(xþy) -
e-i(3π/a)(xþy)) = (2/V)1/2 sin[3π/a(xþy)] (Figure 16a, right).
The former has its electron density near most of the ions, the
latter between most of the ions. Corresponding to each pair of
peaks in the Æ330æ set is a similar pair of states.

A mixing representative of the Æ114æ diffraction peaks is shown in
Figure 16b. The pair of free-electron states that mix to produce these
pictures are ψN(rB) = (1/V1/2)ei(π/a,π/a,4π/a) 3 rB = (1/V1/2)
ei(π/a)(xþyþ4z) and ψN(rB) = (1/V1/2)ei(-π/a,-π/a,-(4π/a)) 3 rB =
(1/V1/2)e-i(π/a)(xþyþ4z), which are again found at k-point N =
(π/a,π/a, 0). There is a subtle difference between themixing shown
in Figure 16b and the previous cases. Namely, the resulting cosine
and sine waves are not aligned with the origin of the unit cell. That is,
these mixed states resemble ΨN(rB) = (2/V)1/2 cos[(π/a)-
(xþyþ4z)þ R] andψN(rB) = (2/V)

1/2 sin[(π/a)(xþyþ4z)þR]
with some phase factorR. This phase factor is needed to produce the
same qualitative picture as before: one state whose electron density is
near most of the ions (Figure 16b, left) and a second whose electron
density is between most of the ions (Figure 16b, right).

Before proceeding to find these nearly free electron states
within the LCAO band structure of Cu5Zn8, we should make one
more point about these states. The reader might notice that all
waves in Figure 16, whether they correspond to the Æ330æ or
Æ114æ diffraction peaks, appear to have the same wavelength. This
is indeed true, for the basic reason that |kB| is inversely propor-
tional to wavelength, and |(3, 3, 0)| = |(1, 1, 4)|. Because the
energy of a plane-wave electronic state is proportional to |kB|

2,
equal wavelengths translate to equal energies. It is vital to the MJ
model that all waves that mix to produce Figure 16 have the same

Figure 15. The band structure of Cu5Zn8, calculated using LDA-DFT
methods (black) and LCAOmethods with atomic parameters calibrated
to the LDA-DFT band structure (green). For bands that are filled, the
energies calculated by the two methods are quite close. For both
methods, the Fermi energy is defined as zero.

Figure 16. The nearly free electron states whose periodicity syncs up
with the (a) Æ330æ and (b) Æ114æ diffraction plane waves of Cu5Zn8. Cu
(black) and Zn (gray) atoms are shown.
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energy. In this way, when mixing causes their energies to split,
they contribute to a pseudogap at a single energy.

While the premise and implementation of the MJ model for
the γ-brasses are beautiful, we may ask: Does the model alone
confirm, to the satisfaction of a typical chemist, that the nearly
free electron states in Figure 16 drive the stability of the Cu5Zn8
valence electron count? Probably not. To most chemists, it is
important to see how this theoretical framework plays out within
a quantum calculation of Cu5Zn8. For this, we employ the same
procedure we used earlier for CuZn to extract the relevant MJ
states and energies from the complex tangle that is the LCAO
band structure of Cu5Zn8.

Figure 17 summarizes our LCAO interpretation of the MJ
model as it relates to the Æ330æ X-ray diffraction peaks in Cu5Zn8.
In Figure 17a, the projected MJ band (red) is plotted on top of
the LCAO band structure (black) along a straight path from
kB = (0, 0, 0) through kB = (3π/a, 3π/a, 0). The MJ band
resembles a nearly free electron parabola. Due to the mixing of

plane waves, the band has energy splittings at N = (π/a, π/a, 0),
Γ = (2π/a, 2π/a, 0), and N = (3π/a, 3π/a, 0) (the waves
corresponding to the Æ110æ, Æ220æ, and Æ330æ peaks). However,
because the atoms in Cu5Zn8 do not interfere particularly
constructively with the Æ110æ or Æ220æ diffraction plane
waves, the energy splittings at N = (π/a, π/a, 0) (0.15 eV)
and Γ = (2π/a, 2π/a, 0) (0.21 eV) are quite small. Due to the
strong constructive interference of the atoms with the Æ330æ
diffraction plane waves, the splitting at N = (3π/a, 3π/a, 0) (2.37
eV) is much larger. Also encouraging is that fact that the two
projected states at this last k-point (red circles at-1.76 and 0.60
eV) straddle the Fermi energy and thus help stabilize Cu5Zn8 at
21/13 valence electrons per atom.

The two projected states at N = (3π/a, 3π/a, 0) are displayed
in Figure 17b,c. For ease of plotting, they are shown in a slightly
different way than were the projected states in CuZn (Figure 8b,c).
The component s and p orbitals on each atom that make up the
projected states are shown not as contours of constant value of
the wave function but as pairs of spheres whose volumes scale
with the coefficients of the atomic orbitals. If the orbital on a
given atom is purely s, it appears as a single sphere. If it is purely p,
it appears as two spheres of equal size and opposite sign. If it is a
mixture of s and p, is appears as two spheres of unequal size and
opposite sign, skewed toward the sign of the s orbital. These two
states resemble their nearly free electron wave analogs, shown
lightly in the background. As was the case for CuZn, the higher-
energy state (Figure 17b) is primarily a combination of s orbitals

Figure 17. (a) The LCAO band structure of Cu5Zn8 (black) and the
projected nearly free electron MJ band (red), plotted along a straight path
through k-space fromΓ= (0, 0, 0) throughN= (3π/a, 3π/a, 0). (b, c) The
two projected crystal orbitals at N = (3π/a, 3π/a, 0), expressed as spheres
that represent their component s and p atomic orbitals (see the text), with
the corresponding nearly free electron waves shown lightly in the back-
ground. The energies of these two states straddle the Fermi energy.

Figure 18. The local atomic orbital interactions of an IT Zn atom in
Cu5Zn8 and its icosahedron of nearest neighbors in (a) the higher-
energy projected MJ state at N = (3π/a, 3π/a, 0), which is of primarily s
character. (b) The 12 local interactions roughly break down as (c) σ-
bonding, (d) nonbonding, and (e) σ-antibonding. Overall, the state is
approximately nonbonding.
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and the lower-energy state (Figure 17c) a combination of
p orbitals. This ordering is again representative of the inverted
region.

As in the CuZn case, it is worth noting the local atomic orbital
interactions within these two wavelike projected states. Figure 18
deals with a particular region of the higher-energy state
(Figure 18a)—an atom located at an IT site and its approximate
icosahedron of 12 nearest neighbors (Figure 18b). Of these 12
interactions, four are primarily σ-bonding (Figure 18c), four
nonbonding (Figure 18d), and four σ-antibonding (Figure 18e).
Overall, this higher-energy state is roughly nonbonding. Fig-
ure 19 shows the analogous pictures of the same region of the
lower-energy state (Figure 19a). Of the interactions between
the same atom and its icosahedron of nearest neighbors
(Figure 19b), four are primarily π-bonding (Figure 19c), four
nonbonding (Figure 19d), and four σ-bonding (Figure 19e). In
total, the lower-energy state is net bonding.

In Figure 20, we move on to the states corresponding to the
Æ114æ diffraction peaks in Cu5Zn8. The story here is more or less
the same as it was for the Æ330æ peaks. The projected MJ band
(Figure 20a), when plotted along a straight path from kB = (0, 0,
0) through kB = (π/a, π/a, 4π/a), resembles a nearly free
electron parabola. The band splits by 1.03 eV at N = (π/a, π/
a, 4π/a), only about half the size of the splitting corresponding to
the Æ330æ peaks. This is to be expected, as the Æ114æ peaks in
Cu5Zn8 are less intense than Æ330æ. The two projected states at
the top and bottom of this splitting are shown in Figure 20b,c.

They again resemble their free-electron wave analogs, with the
higher-energy state (Figure 20b) consisting primarily of s and the
lower-energy state (Figure 20c) consisting primarily of p. This
ordering is again in the inverted region.

In terms of local atomic orbital interactions, we can again see
that the higher-energy of the two projected states is roughly
nonbonding, while the lower energy of the two is bonding.
Figure 21 shows interactions in the region of the higher-energy
state (Figure 21a) between an IT atom and its icosahedron of
nearest neighbors (Figure 21b). Four are primarily σ-bonding
(Figure 21c), four nonbonding (Figure 21d), and four σ-antibond-
ing (Figure 21e), for a total that is close to nonbonding. Figure 22
shows the analogous pictures of the same region of the lower-energy
state (Figure 22a). Of the interactions between the same atom and
its icosahedron of nearest neighbors (Figure 22b), four are primarily
π-bonding (Figure 22c), four nonbonding (Figure 22d), and fourσ-
bonding (Figure 22e), for a total that is net bonding.

There is one significant way in which the projected states
corresponding to the Æ114æ X-ray diffraction peaks differ from

Figure 19. The local atomic orbital interactions of an IT Zn atom in
Cu5Zn8 and its icosahedron of nearest neighbors in (a) the lower-energy
projectedMJ state at N = (3π/a, 3π/a, 0), which is of primarily p character.
(b) The 12 local interactions roughly break down as (c) π-bonding, (d)
nonbonding, and (e) σ-bonding. Overall, the state is net bonding.

Figure 20. (a) The LCAO band structure of Cu5Zn8 (black) and the
projected nearly free electron MJ band (red), plotted along a straight
path through k-space from Γ = (0, 0, 0) through N = (π/a, π/a, 4π/a).
(b, c) The two projected crystal orbitals at N = (π/a, π/a, 4π/a),
expressed as spheres that represent their component s and p atomic
orbitals (see the text), with the corresponding nearly free electron waves
shown lightly in the background. The energies of both states lie below
the Fermi energy.



P dx.doi.org/10.1021/cr1001222 |Chem. Rev. XXXX, XXX, 000–000

Chemical Reviews REVIEW

those corresponding to Æ330æ. Namely, the two projected states
at N = (π/a, π/a, 4π/a) (red circles in Figure 20a at -1.59
and-0.56 eV) both lie below the Fermi energy. This seems at first
to be a strike against the MJ model or our interpretation of it, as it
suggests that the energy splitting at this k-point does not stabilize
Cu5Zn8 at its experimental electron count. But as the next subsec-
tion explains, this result need not be seen as problematic at all.

6.3. Energy Splitting at Other k-Points in Cu5Zn8
We showed earlier that MJ-type energy splitting occurs not

just at isolated k-points but on the surface of the Jones zone.
Because CuZn had only the strong Æ110æ diffraction peaks

corresponding to states near the Fermi energy, its Jones zone
in Figure 10a had only one type of face. Cu5Zn8, however, has
strong Æ330æ and strong Æ114æ peaks. Its Jones zone is therefore
bounded by two symmetry-inequivalent types of faces.

The Cu5Zn8 Jones zone (Figure 23a) is shownwith one of each
type of face emphasized (Figure 23b). The 12 red faces correspond
to the Æ330æ reflections, while the 24 blue faces correspond to
Æ114æ. One notable qualitative feature of this Cu5Zn8 Jones zone is
that it is much closer to spherical than its CuZn counterpart. Due
to its larger number of faces, the vertices of the Cu5Zn8 Jones zone
do not jut out asmuch. The result is that the energy splitting on the
surface occurs over a narrower range of energies for Cu5Zn8 than
for CuZn. This can be seen in the respective densities of states, in
which the pseudogap is sharper andmore pronounced for Cu5Zn8
(Figure 14c) than for CuZn (Figure 5c).

In order to estimate the number of valence electrons this
system is likely to hold, one might first assume that all states
inside the Jones zone (below the energy splitting) are filled and
all those outside the zone (above the energy splitting) are empty.
If this is true, then the reciprocal-space volume of the Jones zone
represents the number of filled valence orbitals per unit cell. The
volume is 45(2π/a)3, or 45 unit cells of the reciprocal lattice.
This translates to 90 valence electrons per unit cell, or 1.73 per
atom—slightly higher than Hume-Rothery’s empirical observa-
tions of the γ-brasses.

Once again, the assumption that all states at the bottom of the
splitting are of lower energy than all states at the top of the
splitting proves faulty. This is clear in Figure 24, in which we plot
the top (gray) and bottom (black) of the energy splitting over the
Jones zone faces corresponding to the Æ330æ (Figure 24a) and
Æ114æ (Figure 24b) reflections. Even with a Jones zone that better
approximates a sphere, there is still nowhere the Fermi energy
can be placed such that it lies between the two paraboloids for all
k-points simultaneously.

Because there is no true energy gap in the density of states of
Cu5Zn8, the Fermi energy is likely to be found at a pseudogap. We
expect such a pseudogap to be centered at an energy that lies
within the splitting for most of the Jones zone surface. Inspection
of the two different faces individually would lead one to arrive at
two different estimates of the Fermi energy. For the surface
corresponding to Æ330æ (Figure 24a), it would be optimal to have

Figure 23. (a) The surface that separates the Cu5Zn8 nearly free
electron states that are above the energy splitting (outside the Jones
zone) from those that are below it (inside the Jones zone). (b) One of
each type of face of the Jones zone, corresponding to the Æ330æ (left, red)
and Æ114æ (right, blue) X-ray diffraction peaks.Figure 21. The local atomic orbital interactions of an IT Zn atom in

Cu5Zn8 and its icosahedron of nearest neighbors in (a) the higher-
energy projectedMJ state at N = (π/a, π/a, 4π/a), which is of primarily
s character. (b) The 12 local interactions roughly break down as (c) σ-
bonding, (d) nonbonding, and (e) σ-antibonding. Overall, the state is
approximately nonbonding.

Figure 22. The local atomic orbital interactions of an IT Zn atom in
Cu5Zn8 and its icosahedron of nearest neighbors in (a) the lower-energy
projected MJ state at N = (π/a, π/a, 4π/a), which is of primarily p
character. (b) The 12 local interactions roughly break down as (c) π-
bonding, (d) nonbonding, and (e) σ-bonding. Overall, the state is net
bonding.
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the Fermi energy just touch the bottom of the gray paraboloid,
0.60 eV above the actual Fermi energy. For the surface corre-
sponding to Æ114æ (Figure 24b), the bottom of the gray paraboloid
is 0.56 eV below the actual Fermi energy. These estimates are
confirmed in Figure 25a, which shows the area on each Jones zone
face for which a given energy lies between the upper and lower
curves. Taking both types of faces into account, we expect the
actual Fermi energy to lie between 0.60 and -0.56 eV (1.68 and
1.49 valence electrons per atom, respectively)—a reassuring result.

It is difficult to pin down exactly where in this range the Fermi
energy “should” lie for Cu5Zn8. One might make an estimate by
finding the energy that maximizes the total Jones zone surface
area that lies within the energy splitting. However, this estimate
of the Fermi energy (Figure 25b) does not differ significantly
from the estimate obtained by considering only the Æ114æ faces
and comes out on the low side of experimental reality. There are a
number of ways in which this estimate is perhaps too simplistic,
which are possible reasons for the discrepancy.

One possible oversimplification is in the way the energies on
the Jones zone surface are calculated. As described earlier, the

energies at the top and bottom of the gap reflect a mixing of two
plane waves found on opposite faces of the Jones zone. While these
pairs of waves are indeed the primary contributors to MJ-type
energy splitting, the splitting could be made more accurate by
including the contributions of other terms as well. This could mean
includingwaves that correspond toweaker, but still significant, X-ray
diffraction peaks. It could alsomean including extra terms for points
near the edges and vertices of the Jones zone, corresponding to the
neighboring faces that approach each other. By considering only the
pairwise mixing of plane waves, we likely underestimate the energy
splitting, especially near edges and vertices of the Jones zone surface.

A second possible oversimplification is in our use of Jones zone
surface area to estimate the pseudogap energy. This method, to
look for the energy at which the largest amount of surface area lies
within the splitting, neglects a key fact. When plane-wave states
mix and split in energy, they do not simply disappear. Rather, they
are pushed to an energy outside the splitting—likely just outside
the splitting. So in considering whether a given energywould be an
energetically stable Fermi energy, we must not only consider it
favorable for the energy to lie within the splitting but also
unfavorable for that energy to lie just outside the splitting.

One can imagine how our methods could be modified to
account for each of these issues. To more accurately calculate the
energies at the top and bottom of the gap, we could include more
plane-wave terms in our mixing equations. To more correctly
estimate the energy of the pseudogap, we could develop a slightly
different method of counting surface area, in which area just
outside the energy gap is disfavored. Even if we were to make
these (and possibly other) adjustments, it is hard to say whether
they would allow us to estimate valence electron counts and
Fermi energies to greater numerical accuracy. Ultimately, these
issues are not determined directly by the pseudogap energy but
by the relative total energies of all possible structures.

Figure 24. The energies at the top (gray) and bottom (black) of the
splitting on the Jones zone faces of Cu5Zn8 corresponding to the (a)
Æ330æ and (b) Æ114æ X-ray diffraction peaks. The Fermi energy (red and
blue) lies between the paraboloids over much of the surfaces.

Figure 25. (a) The area on the Cu5Zn8 Jones zone faces corresponding
to Æ330æ and Æ114æ for which a given energy lies within the splitting. (b)
The area on the entire Jones zone surface for which a given energy lies
within the splitting. Area is plotted in arbitrary units.
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7. ONWARD TO COMPLEXITY: THE 2 � 2 � 2 γ-
BRASSES

We hope the previous sections of this account have convinced
the reader that there is chemical importance to the electronic
states on which the MJ model focuses. Even if the model and our
LCAO interpretation of it cannot yet predict stable electron
counts as precisely or as unambiguously as we would hope, they
appear to be meaningful and qualitatively correct.

We therefore have certain expectations of how the same line of
reasoning is likely to turn out for the 2 � 2 � 2 γ-brass super-
structures. In the X-ray diffraction patterns of these compounds
(Figure 13b), we saw that in addition to the strong Æ660æ and Æ228æ
peaks derived fromγ-brass itself, there are strong Æ555æpeaks.These
new peaks indicate more opportunities for MJ-type mixing, each of
which contributes to the pseudogap that stabilizes the compounds at
a given valence electron count. Figure 26 shows the Jones zone that
marks the energy gap in the 2 � 2 � 2 γ-brasses (Figure 26a). It
consists of three symmetry-inequivalent types of faces (Figure 26b):
12 faces corresponding to the Æ660æ peaks (red), 24 faces corre-
sponding to the Æ228æ peaks (blue), and 8 faces corresponding to
the Æ555æ peaks (green).

With its relatively large number of faces, the Jones zone
representing the 2 � 2 � 2 γ-brasses is quite nearly spherical.
This should mean that the energy splitting occurs over a narrow
range of energies and that the pseudogap in the density of states is
quite sharp and pronounced. One would expect the number of
valence orbitals per unit cell with energies lower than this
pseudogap to be roughly equal to the Jones zone volume. The
volume is 348(2π/a)3, meaning that the unit cell of 2� 2� 2 γ-
brass holds 696 valence electrons. This is a reasonable estimate of
the actual valence electron counts in many of the 2 � 2 � 2 γ-
brasses: Zn21Pt5 (672 per unit cell, 1.62 per atom), Li21Si5

(656 per unit cell, 1.58 per atom), Mg44Rh7 (648 per unit cell,
1.59 per atom), Mg44Ir7 (648 per unit cell, 1.59 per atom),
Mg6Pd (679 per unit cell, 1.71 per atom), Cu41Sn11 (680 per unit
cell, 1.63 per atom), Mg29Ir4 (648 per unit cell, 1.64 per atom),
Zn91Ir11 (684 per unit cell, 1.68 per atom), and Li13Na29Ba19
(640 per unit cell, 1.31 per atom). For technical reasons, it has
proven difficult to extract precise information about the 2� 2�
2 γ-brasses from an LCAO calculation. For now, our suggestion
that the electron counts of these compounds are driven by the
same factors that guide CuZn and Cu5Zn8 therefore remains an
inference.

8. CONCLUSION

In this work, we have reviewed Mott and Jones’s theoretical
model for Hume-Rothery electron phases, casting it into real-space
LCAO language. In doing so, we have shown that the hallmark of an
electron phase—a pseudogap in the density of states at the Fermi
energy—can be seen not only in terms of themixing and splitting of
plane-wave electronic states, but also in terms of the energy
difference between an s-based and a p-based band. This latter
interpretation highlights the fundamental similarity between the
Hume-Rothery rules in solids and the molecular electron-counting
rules that are ingrained in the language and logic of chemists.

However, neither Mott and Jones’s traditional model nor our
LCAO interpretation of it does everything it sets out to do.That is to
say, neither reproduces Hume-Rothery’s electron-counting rules
unambiguously or withmuch numerical precision. The likely reason
for this is that both models focus on pseudogap energies of crystal
structures, rather than their total energies. While related, it is only
through a total energy comparison that one can determine which
structure is favored over others at a given electron count.

We hope to achieve this goal—a rationale that accounts for the
stability ranges of the Hume-Rothery electron phases—in our
future work. Our LCAO interpretation of Mott and Jones’s
arguments will likely be an integral part of such a rationale, as it
has already been shown that H€uckel theory is capable of correctly
ordering the total energies of these structures.79,80

Wedonotwish to suggest that either thenearly free electronor the
LCAOviewpoint is superior. The two complement each other nicely,
with the former focusing on the wavelike nature of the electronic
states and the latter on the bonding and antibonding interactions
between atomic orbitals. The two viewpoints arrive at similar
conclusions, and in the end are distinguished only in subtle ways.
Each has its advantages, and each allows one to understand certain
aspects of the electronic structure of these compounds more clearly.

APPENDIX

In our analysis of γ-brass and its 2� 2� 2 superstructures, we
have used information about their respective sets of strong X-ray
diffraction peaks (Figure 13). For γ-brass, the dominant peaks
are Æ330æ and Æ114æ; for the 2 � 2 � 2 superstructures, they are
Æ660æ, Æ228æ, and Æ555æ. But we have yet to explore why this is so.
We would like to identify, from a qualitative real-space stand-
point, the source of these strong peaks.

These sets of strong diffraction peaks are similar to each other
in that the γ-brass Æ330æ and Æ114æ peaks become Æ660æ and
Æ228æ when the unit cell is doubled in all three dimensions.
However, they differ in that the Æ555æ peaks in the 2 � 2 � 2
superstructures have no analog in γ-brass. In this Appendix, we
therefore address two questions. First, what is the source of the
strong Æ330æ and Æ114æ peaks in γ-brass? Second, what features of

Figure 26. (a) The surface that separates the 2 � 2 � 2 γ-brass nearly
free electron states that are above the energy splitting (outside the Jones
zone) from those that are below it (inside the Jones zone). (b) One of
each type of face of the Jones zone, corresponding to the Æ660æ (top,
red), Æ228æ (middle, blue), and Æ555æ (bottom, green) X-ray
diffraction peaks.
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the transformation from γ-brass to the 2� 2� 2 γ-brasses bring
about the intense Æ555æ peaks?

The Æ330æ and Æ114æ Peaks in γ-Brass.With practice, the human
eye is quite good at judging which X-ray diffraction peaks are strong
for a given crystal structure. A strong peak is one for which most of
the atomic positions lie near the crests of the plane wave corre-
sponding to that peak. So in order to find the strong peaks in the
ordered γ-brass phase Cu5Zn8, we must identify the directions in
which the atoms lie on parallel planes. While this task is not so
simple for a unit cell with many atoms, it can certainly be done.
Recall that the Cu5Zn8 structure has a cubic unit cell with a

body-centered arrangement of two 26-atom γ-brass clusters.
One γ-brass cluster is shown in Figure 27a, as four nested
polyhedra. In anticipation of the discussion that follows, the
cluster is shown from a slightly different viewpoint in Figure 27b.
When γ-brass clusters are placed in unit cells, the viewpoint in
Figure 27b is generally oriented along a face diagonal of the cell.
From now on, we will consider this view (i.e., the direction
normal to the page in Figure 27b) to be along the [110] direction.
In Figure 27c, the cluster is connected in a way that illustrates an
approximate 10-fold symmetry.114 When shown with the view-
point and connectivity of Figure 27c, the γ-brass cluster looks
like a group of central atoms surrounded by a decagon and half of
a second decagon.
The last five panels of this figure (Figure 27d-h) suggest five

possible plane waves for which the cluster atoms lie mostly near
the crests. In keeping with the approximate 10-fold symmetry of
the cluster, the directions of these plane waves differ by 36�.
These waves, along with all other symmetry-equivalent ones,
could potentially correspond to strong diffraction peaks in a
crystal structure with γ-brass clusters. However, this figure alone
cannot identify the strong X-ray peaks for Cu5Zn8. Because
diffraction is measured not for a single cluster but for an entire
crystal, we must observe how these plane waves interact with all
clusters in the unit cell.

In keeping with its body-centered translational symmetry, the
Cu5Zn8 structure has two γ-brass clusters centered at (0, 0, 0)
and (a/2, a/2, a/2) in the cubic unit cell (Figure 28a). For the
five plane waves that sync up with the atoms of a single γ-brass
cluster (Figure 27d-h), let us see how each wave interacts with
the pair of clusters within a unit cell. In Figure 28b, the wave from
Figure 27d is shown interacting with two clusters. The important
result is that the wave’s interactions with the two clusters are in
phase with each other. That is, when the wave is positioned to
have its crests aligned with the atoms in one cluster, its crests are
consequently aligned with the atoms in the other cluster. There-
fore, all γ-brass clusters in the Cu5Zn8 structure interfere
constructively with this plane wave, resulting in a strong X-ray
diffraction peak. As our view is in the [110] direction, this plane
wave and this diffraction peak have Miller indices 330. By
symmetry, the structure must have an entire set of 12 equally
strong Æ330æ peaks (all permutations of (3, (3, and 0).
By symmetry of the γ-brass clusters, the plane waves in

Figure 27f,g are equivalent. We therefore show only one of them
interacting with two clusters (Figure 28c). Once again, this wave’s
interactions with the two clusters are in phase, as the wave crests are
aligned with the atoms in both clusters. Therefore, this plane wave,
whose Miller indices are 114, corresponds to a strong X-ray
diffraction peak. The entire set of 24 equivalent Æ114æ peaks (all
permutations of (1, (1, and (4) must be equally strong.
Lastly, we come to the two symmetry-equivalent plane waves

in Figure 27e,h, one of which we show interacting with two
clusters (Figure 28d). In contrast to the previous cases, this
wave’s interactions with the two clusters are not in phase. When
the wave is positioned to have its crests aligned with the atoms in
one cluster, its crests are not aligned with the atoms in the other.
In other words, while the wave’s intracluster interference is
constructive, its intercluster interference is destructive. Conse-
quently, this plane wave, whose Miller indices are 5/2 5/2 5/2,
has no corresponding X-ray diffraction peak.115

Despite the relative complexity of the Cu5Zn8 structure, we have
accounted for the dominant peaks in its X-ray diffraction pattern
using real-space pictures. We now move on to the diffraction peaks
of the significantly more complicated 2 � 2 � 2 γ-brasses.

Cluster Inversion and the Æ555æ Peaks in 2� 2� 2 γ-Brasses.
Of the 2� 2� 2 γ-brass structures that have been solved by single
crystal X-ray diffraction, Zn21Pt5

18,33 and Li21Si5
27,28 can be

Figure 27. (a, b) Two views of a 26-atom γ-brass cluster, depicted as an
inner tetrahedron (IT), an outer tetrahedron (OT), an octahedron
(OH), and a cuboctahedron (CO). (c) An alternative connectivity of the
cluster, highlighting its approximate 10-fold symmetry. (d-h) Five
plane waves for which most of the cluster atoms lie near the crests.

Figure 28. (a) The two γ-brass clusters in a cubic unit cell of Cu5Zn8.
Representatives of the three unique sets of plane waves with constructive
intracluster interference: (b) Æ330æ, (c) Æ114æ, and (d) Æ5/2 5/2 5/2æ. Of the
three, Æ330æ and Æ114æ also have constructive intercluster interference and
therefore strong X-ray diffraction peaks. However, Æ5/2 5/2 5/2æ has
destructive intercluster interference and therefore no diffraction intensity.
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comparedmost easily to Cu5Zn8, as they are built entirely ofγ-brass
clusters. We therefore focus our attention on Zn21Pt5 and Li21Si5,
though any discussion of these structures for the remainder of this
Appendix relates to other superstructures as well.
Zn21Pt5 and Li21Si5, very nearly identical to each other with

the exception of the elemental identities, crystallize with F43m
symmetry. As the Cu5Zn8 unit cell contains two γ-brass clusters,
those of the 2� 2� 2 γ-brasses contain 16 such clusters, a total
of 416 atoms. By face-centered translational symmetry, these 16
clusters represent four crystallographically unique sets. One
representative of each set in the unit cell of Zn21Pt5 is displayed
in Figure 29. Using conventions we introduced in a previous
paper,68 we show the clusters centered at (0, 0, 0), (a/4, a/4, a/
4), (a/2, a/2, a/2), and (3a/4, 3a/4, 3a/4), and refer to them as
Z (zero), Q (quarter), H (half), and T (three quarters).
Zn21Pt5 and Li21Si5 share two key structural features that

distinguish them from Cu5Zn8. The first one, and the focus of
this section, is that the H cluster distorts to the point that it is
more accurately shown as inverted with respect to the other
clusters. In Figure 30, the clusters of 2 � 2 � 2 γ-brass are
shown in twoways. Figure 30a is a simple doubling of the Cu5Zn8
unit cell in all three dimensions, with all clusters oriented exactly
as they are in Cu5Zn8. The second panel (Figure 30b), which
more accurately reflects the crystal structures of Zn21Pt5 and
Li21Si5, shows the H cluster inverted with respect to the
other three.

This H cluster inversion seems at first surprising and myster-
ious. Why would it stabilize the structures electronically? For the
answer, we turn to the X-ray diffraction patterns. As theMott and
Jones model dictates, the stability of electron phases is closely
related to the strength of their diffraction peaks. Let us therefore
examine the role inversion of the H cluster in creating strong
Æ660æ, Æ228æ, and Æ555æ peaks in the X-ray diffraction patterns of
Zn21Pt5 and Li21Si5.
For Cu5Zn8, we have seen that the strongest peaks are Æ330æ

and Æ114æ. When the unit cell of Cu5Zn8 is doubled in all three
dimensions without changing the atomic positions (Figure 30a),
the diffraction intensities cannot change. Without inversion of
the H cluster, we therefore expect 2� 2� 2 γ-brass to have the
same strong peaks as γ-brass itself. The labels of these peaks
change, however, taking on the Miller indices Æ660æ and Æ228æ in
the new unit cell. By recognizing that Æ660æ and Æ228æ are simply
the strong peaks of Cu5Zn8, we are well on our way to under-
standing the diffraction patterns of Zn21Pt5 and Li21Si5. What
remains is to explain how inversion of the H cluster allows the
Æ660æ and Æ228æ to remain strong while also creating strong Æ555æ
peaks. We illustrate this in a series of three figures.
The first of these figures (Figure 31) deals with the Æ660æ

peaks. Regardless of whether all four γ-brass clusters have the
same orientation (Figure 31a) or the H cluster is inverted
(Figure 31b), all clusters interfere constructively with the Æ660æ
plane waves, resulting in strong Æ660æ peaks. The same is true of
the Æ228æ peaks (Figure 32). When all four γ-brass clusters have
the same orientation (Figure 32a), they all interfere construc-
tively with the Æ228æ plane waves. When the H cluster is inverted
(Figure 32b), its atoms still sync up almost as well with the wave
crests, allowing the Æ228æ peaks to remain strong.
Finally, we come to the Æ555æ peaks (Figure 33), the major

distinguishing feature of 2 � 2 � 2 γ-brass X-ray diffraction
patterns as compared to γ-brass. When all four clusters are
identical (Figure 33a), the Æ555æ peaks have no intensity. This
can be seen in the destructive intercluster interference with the
Æ555æ plane waves.116 Take special note of the fact that the Z and
H clusters cancel each other out by having most of the Z atoms
near wave crests and most of the H atoms near wave troughs.
Now, consider what happens when the H cluster is inverted
(Figure 33b). The H cluster atoms now reside near wave crests,

Figure 29. The cubic unit cell of Zn21Pt5, emphasizing four crystal-
lographically inequivalent γ-brass clusters centered at Z = (0, 0, 0), Q =
(a/4, a/4, a/4), H = (a/2, a/2, a/2), and T = (3a/4, 3a/4, 3a/4). The
strongly distorted H cluster is shown in its more accurate inverted form.
Pt atoms (black) occupy the ZOT, QOT, HOH, and TOH sites, while
Zn atoms (gray) occupy the rest.

Figure 30. The four crystallographically inequivalent clusters in a cubic
unit cell of 2 � 2 � 2 γ-brass, (a) with all four clusters oriented
identically and (b) with the H cluster inverted with respect to the others.

Figure 31. Interaction between the four clusters in 2 � 2 � 2 γ-brass
and the Æ660æ plane waves, (a) with all four clusters oriented identically
and (b) with the H cluster inverted. In both cases, intra- and intercluster
interference are constructive, leading to strong diffraction peaks.
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making the previously nonexistent Æ555æ peaks relatively intense.
The emergence of strong Æ555æ peaks in Zn21Pt5 and Li21Si5 can
thus be rationalized using the inversion of the H cluster.

The Role of Coloring in the Diffraction Patterns of 2� 2� 2
γ-Brasses. So far, we have been concerned only with atomic
positions, and not with which elements lie at which sites. We have
implicitly assumed that all atoms scatter X-rays equally, which is
of course not true. An atom’s scattering factor is related to its
number of electrons. So when a compound has two elements of
very different numbers of electrons, as do Zn21Pt5 and Li21Si5, its
X-ray diffraction pattern is strongly influenced by the site
preferences of the constituent elements. Specifically, when one
determines the strength of an X-ray peak by observing how well
the atoms sync up with the peaks of a plane wave, one must
consider the placement of heavier atoms to be more important.
This brings us to the second feature that distingishes Zn21Pt5 and

Li21Si5 fromCu5Zn8. In both superstructures, the heavy element (i.e.,
Pt or Si) occupies four crytsallographic sites: the outer tetrahedron of
the Z cluster (ZOT), the outer tetrahedron of theQ cluster (QOT),

the octahedronof theHcluster (HOH), and the octahedronof theT
cluster (TOH) (Figure 34a). As we will now see, these heavy atoms
are positioned in such a way that they strengthen the already strong
Æ660æ, Æ228æ, and Æ555æ diffraction peaks.
As Figure 34b shows, these four heavy atom sites are excep-

tionally in phase with the Æ660æ plane waves, with every heavy
atom lying almost exactly on a crest. Because heavy atoms have
extra importance in determining the strength of diffraction peaks,
we expect this pattern of site occupancy to strengthen the Æ660æ
peaks of Zn21Pt5 and Li21Si5. There is, however, a caveat to this
conclusion. Because the Æ660æ plane waves interact equivalently
with all four clusters, the peaks would be similarly enhanced if the
heavy atoms were found on any combination of OT and OH
sites. All the Æ660æ peaks can tell us is that they are enhanced
when the heavy atoms are found on OT and OH sites.
A similar story can be told of the Æ228æ peaks (Figure 34c). As

nearly all the heavy atoms in Zn21Pt5 and Li21Si5 are found very close
to the crests of the Æ228æplanewaves, we expect the Æ228æpeaks to be
strengthened. But once again, we should not read toomuch into this
conclusion. Except for the H cluster (which is inverted), the Æ228æ
plane waves interact equivalently with all clusters. This means the
Æ228æ peaks would be enhanced by the placement of heavy atoms on
any combination ofOTandOHsites. The lone exception is that, due
to the inversion of the H cluster, the placement of heavy atoms on
HOT would interfere destructively with these waves. Indeed, heavy
atoms are not found on HOT in Zn21Pt5 or Li21Si5.
As was the case for inversion of the H cluster, the strongest

argument for the ZOT-QOT-HOH-TOH heavy atom occu-
pancy pattern is in the Æ555æ diffraction peaks. As Figure 34d shows,
the heavy atoms line upwell with the crests of the Æ555æ planewaves,
enhancing the Æ555æ peaks. What is important here is that the Æ555æ
waves are in a slightly different phase with respect to each of the four
clusters.While theOTatomsof theZ andQclusters line upwith the
Æ555æ wave crests, the OH atoms do not. And while the OH atoms
of the H and T clusters line up with the Æ555æ wave crests, the
OT atoms do not. Therefore, the experimentally observed

Figure 32. Interaction between the four clusters in 2 � 2 � 2 γ-brass
and the Æ228æ plane waves, (a) with all four clusters oriented identically
and (b) with the H cluster inverted. In both cases, intra- and intercluster
interference are constructive, leading to strong diffraction peaks.

Figure 33. Interaction between the four clusters in 2 � 2 � 2 γ-brass
and the Æ555æ plane waves, (a) with all four clusters oriented identically
and (b) with the H cluster inverted. While both pictures have good
intracluster interference, only the second has the constructive inter-
cluster interference required to create strong diffraction peaks.

Figure 34. (a) The experimentally observed site positions of the heavier
element in Zn21Pt5 and Li21Si5, shown in cyan. These four sites (ZOT,
QOT, HOH, and TOH) align particularly well with the crests of the (b)
Æ660æ, (c) Æ228æ, and (d) Æ555æ plane waves, strengthening the inten-
sities of the corresponding X-ray diffraction peaks.
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ZOT-QOT-HOH-TOH heavy atom occupancy pattern is the
optimal one for enhancing the Æ555æ peaks in Zn21Pt5 and Li21Si5.
Throughout this paper, we have seen how Mott and Jones’s

arguments and our LCAO interpretation of them can be used to
rationalize complex crystal structures. The results in this Appen-
dix suggest ways in which the models might be taken a step
further, to solve or predict them. The features that stabilize filled
states near the Fermi energy (atoms, especially electronegative
ones, on parallel planes) are similar to those that strengthen
X-ray diffraction peaks (atoms, especially heavy ones, on parallel
planes). For a given stoichiometry and set of atomic positions,
the experimental coloring pattern is therefore likely to be that
which strengthens the relevant X-ray diffraction peaks.
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