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Under normal conditions, sodium forms a 1:1 stoichiometric compound with indium, and also with
thallium, both in the double-diamond structure. But sodium does not combine with aluminum at all.
Could NaAl exist? If so, under what conditions and in which structural types? Instead of beginning
with a purely computational and first-principles structure search, we are led to apply the early
Brillouin and higher �Jones� zone ideas of the physics determining structural selection. We begin
with a brief recapitulation of the higher zone concept as applied to the stability of metals and
intermetallic compounds. We then discuss the extension of this concept to problems where density
becomes a primary variable, within the second-order band structure approximation. An analysis of
the range of applicability of pressure-induced Jones zone activation is presented. The simple NaAl
compound serves us as a numerical laboratory for the application of this concept. Higher zone
arguments and chemical intuition lead quite naturally to the suggestion that 1:1 compound formation
between sodium and aluminum should be favored under pressure and specifically in the
double-diamond structure. This is confirmed computationally by density functional theoretic
methods within the generalized gradient approximation. © 2010 American Institute of Physics.
�doi:10.1063/1.3328198�

Increase of density can cause pronounced changes in
geometric arrangements and electronic structures in the con-
densed states of metals. In particular, metals traditionally
considered “simple” have recently been shown to exhibit ex-
traordinary structural variety and properties under high pres-
sure, patently belying this characterization. For instance,
lithium and sodium, or their combination with a second ele-
ment, have been shown to undergo intricate structural trans-
formations under pressure, in both liquid and solid phases,
departing in fascinating ways from close packing.1–8 The
dramatic change in reactivity and emergence of new com-
pounds under pressure provide a productive arena for re-
examining and deepening our understanding of the underly-
ing structural principles.7–10 Obvious questions arise in this
context: what new crystalline compounds might form under
pressure and in what structures? And how might we act on
clues before we actually begin any experimental synthesis or
even before embarking on more extended first-principles cal-
culations? And further, are structural principles developed
for compounds at ordinary pressures still applicable when
high pressure becomes the thermodynamic variable of
choice? If so, then why?

A number of algorithms have been applied, with some
success, to predict structures under high pressure or to
complement experimental structure determination.7,8,11–13

However, these methods generally offer little physical insight

on why a particular configuration is favored or what reduced
parameter space is pertinent to the structure of a class of
materials under pressure. To set the problem in context, we
note that a synthetic inorganic chemist, well versed in va-
lence rules, is much less frequently bothered by the question
“what can be made?,” than by “how to make it?” And the
chemist usually does make it, without recourse to a sophis-
ticated quantum mechanical computational package. In stark
contrast, however, it is a potent challenge to predict what is
going to happen when we put the squeeze on a metal, or two
of them, in a diamond anvil cell. The key issue here is the
lack of qualitative understanding, call it insight or theory,
relating the stability of metals and intermetallic compounds
to a simple set of physical variables, especially when pres-
sure is in the multigigapascal regime.

Some general trends concerning the crystalline metallic
state of simple metals under pressure have become clear, and
these may offer some guideposts for discovering new inter-
metallic phases. In particular, it has been pointed out, notably
by Ackland and Macleod14 and by Degtyareva,15,16 that the
Jones17 and later Mott and Jones18 stability arguments often
play a critical role in determining structures in novel metallic
phases under high pressure.7 The essence of this reasoning
resides in an argument that the contact of bands with Bril-
louin zone �BZ� planes, associated with crystal �pseudo�po-
tentials VK �generally local�, and states near the Fermi level
can be a key stabilizing factor. The value of VK varies in
general in complex fashion with density, but straightforwarda�Electronic mail: rh34@cornell.edu.

THE JOURNAL OF CHEMICAL PHYSICS 132, 114106 �2010�

0021-9606/2010/132�11�/114106/12/$30.00 © 2010 American Institute of Physics132, 114106-1

Downloaded 04 Aug 2011 to 128.253.229.242. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3328198
http://dx.doi.org/10.1063/1.3328198
http://dx.doi.org/10.1063/1.3328198


computation of relevant VK’s in simple forms may offer an
efficient way of searching for stabilizing factors at high den-
sity. The argument for higher zones, including its implication
for associated structural stability and instability, can be seen
as an extension to the substantial and enriching complexities
of three-dimensional �3D� structure of orbital overlap19 and
also the Jahn–Teller effect,20 venerable molecular concepts
of immense utility.

In this paper, we extend the higher zone concept to the
context of intermetallic compounds under high pressure, fol-
lowing a brief retrospective of this concept for metals under
ordinary conditions. Then we argue that elevation of average
density can enhance the associated stability in metals and
intermetallic compounds, through a mechanism that we call
pressure-induced zone plane activation. Subsequently, we
exemplify the utility of this concept by a computational in-
vestigation, guided by the higher zone reasoning �and
supplemented with structural maps and a moderately auto-
mated structural search method� on the existence of binary
intermetallic phases of sodium �Na� and aluminum �Al� un-
der high pressure. Our results indicate that sodium and alu-
minum may be impelled to take up a 1:1 intermetallic com-
pound by quite moderate pressure �just 12 GPa�. The ensuing
compound NaAl also adopts the sodium thallide �NaTl�
structure, epitomized by the elegant double-diamond ar-
rangement. The computational methodologies we use are de-
scribed in detail in the Appendix.

I. THE CONCEPT OF STABILITY WITHIN THE HIGHER
„JONES… ZONE FRAMEWORK

We begin our discussions of the Jones �and later Mott
and Jones� arguments on the stability of certain intermetallic
phases with a short review which is not meant to be exhaus-
tive. Its purpose is to recapitulate the essence of this impor-
tant formalism that we shall apply to structural problems at
high pressure, specifically, in the Na–Al example to follow.

From late 1920s through the 1930s, Hume-Rothery21

proposed empirical rules that for normal conditions of one
atmosphere and moderate temperatures alloy solutions could
undergo structural transitions at quite specific concentrations
of their constituent metals. He further noted that disparities
in ionic sizes should also be a contributing factor for overall
stability. Viewing the special stability of specific concentra-
tion as a problem in which ions of suitably averaged valence
continued to occupy the sites of one of the initiating lattices
�with reciprocal lattice vectors �K��, Jones17 and Mott and
Jones18 formulated a condition on the magnitude of the
concentration-dependent free-electron Fermi wave vector,
kF, associated with such an instability, namely

kF = K/2, �1�

where the reciprocal lattice vector K involved was usually
associated with the innermost plane of a particular zone.17,18

This is clearly a viewpoint rooted in the idea of a virtual
crystal and also established within the independent-electron
approximation.

The underlying notion was that alloys would change
phase in such a way as to mainly accommodate the valence
electrons within a certain zone, often the first but, important

for what follows, also within higher zones �referred to often
as the Jones zones22�. Implicit in these ideas is a principle of
involvement or contact of the Fermi surface of a hypothetical
initial free-electron gas state with the planes of such a zone.
The mechanism is clearly to be seen as part of a much wider
approach to predicting the structures of metallic many-
particle systems, given the knowledge of the electron-ion
interactions or pseudopotentials themselves. It should be
noted that the pseudopotential V�r� is itself related to
Hume-Rothery’s21 original conception of ion sizes.

An example of the stabilization being proposed is illus-
trated in Fig. 1�a�, for a one-dimensional �1D� case. Starting
with a free-electron band �which is gapless at the Bragg
plane associated with K /2�, a band gap is opened as soon the
lattice potential is turned on, providing the geometric struc-
ture factor associated with a possible basis is nonvanishing.
Suppose that for this 1D system the electron count is such
that free-electron levels are filled just up to K /2. Then
clearly a gap opening has a stabilizing effect on the elec-
tronic energy, and the overall stabilization will depend on the
magnitude of V�K� �see Fig. 1�a��.

It ought also to be noted that the stabilization energy
�usually per atom� is defined as the energy of the final elec-
tronic system interacting with the ions, diminished by that of
the starting uniform electronic system, at the same average
electron density. It follows that it is intuitive and pragmatic
to use the concept of emergent zone activation to compare
the stability of different structures at the same electron count.
But to determine the optimal electron count using Jones’
condition �Eq. �1�� for a given structure will require more
caution in establishing thermodynamic consistency.

The geometric implication of zone activation stability is
actually apparent only when a problem in two or three di-
mensions is considered. As we show in Fig. 1�b�, the geo-
metric relation between BZ planes and the Fermi surface can

FIG. 1. The basic concept of the Jones and Mott and Jones’ arguments for
the Hume-Rothery systematization of stability. �a� Nearly free-electron
bands in one dimension, with different lattice potential strengths at K �0, V1,
and V2�. �b� A 2D example of how the geometric structure affects the Mott
and Jones type stability �or instability�. We start with a 2D square lattice,
whose first BZ is a square �shown as the square box�, with electron count
that the Fermi circle is just inscribed by the first BZ. Upon imposition of a
normal or a predominantly shear strain, the first BZ becomes rectangular or
hexagonal, shown as 2D boxes. The unit cell area �thus the area of the first
BZ� is kept constant. Note that the polygons are the first BZs, whose vertices
are not necessarily reciprocal lattice points in general.
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be changed by structural rearrangement. In this hypothetical
example, the Fermi circle is just inscribed in the square first
BZ when the lattice itself is square �Fig. 1�b� middle�. Ap-
parently, there is a topological interplay between the free-
electron Fermi surface and the shape of the BZ, where the
latter becomes a variable as the lattice is subjected to a strain.
For a general 3D crystal, the homogeneous strain can be
characterized by a strain tensor, ���, for which

x�,f = ���x�,i, �2�

where �x�,i� and �x�,f� are the initial and final atomic con-
figurations, respectively, and � and � represent x, y, and z
directions in Cartesian coordinates.

Keeping the electron count unchanged, we deform the
structure by a normal strain and obtain a rectangular lattice.
In this case, two of the first BZ planes intersect the free-
electron Fermi surface, while the other two separate from the
Fermi surface �Fig. 1�b� top�. If we start with the square
lattice again, but now apply a predominantly shear strain to
form a hexagonal lattice �a small normal strain in addition to
the shear is needed to form a hexagonal lattice�, the Fermi
surface will be entirely contained in the first BZ with a finite
separation from the zone planes �Fig. 1�b� bottom�. Clearly,
each of the structures in these elementary examples may in
general be associated with quite different stabilizations be-
cause of the interaction between states near the zone planes.
And those differences might in turn lead to a structural pref-
erence. In general, the polytope �a polygon in two-
dimensional �2D� and a polyhedron in 3D� formed by Bragg
planes bounding the Fermi surface need not be the first BZ,
but can be any polytope formed by Bragg planes that have
the strongest contact with the Fermi sphere. In this context,
the zone is called a Jones zone as introduced above.

There will surely be correspondingly induced electronic
charge densities. Blandin23 and Heine24 both remarked upon
the possibility that in reciprocal space rapid changes in elec-
tronic response densities near 2kF �in reciprocal space� might
well be part of the impending physics of structural instability.
This was confirmed in detail by Stroud and Ashcroft25,26 by
direct evaluation of response or band structure energies, but
they also noted that to account for the overall requirements
of thermodynamic stability, it would be necessary to evaluate
the response beyond linear order. The eventual structure will
be one that minimizes the Gibbs energy, an important con-
tributor to which is the electronic component determined in
the field of the ions. In the mean field, independent-electron
approximation, the Gibbs energy per electron of this compo-
nent is the corresponding electronic chemical potential
which, in the T→0 limit, becomes the Fermi energy for a
metallic state. Though other terms are also of considerable
structural importance �for example, electrostatic or Made-
lung contributions�, this argues for ionic arrangements
which, relative to band minima, actually lead to the lowest
Fermi energies in static ground states. For the case where the
initial unperturbed Fermi surface is within a zone plane �as-
sociated with K�, it has been shown27 that if V�K� is the
Fourier component of the associated pseudopotential, then
from direct evaluation of the Fermi surface distortions
caused by the zone plane, and the obvious constraint on the

total k-space volume enclosed by the Fermi surface� there is
a reduction in Fermi energy which is proportional to

�
K

V2�y�y ln�1 − y

1 + y
� , �3�

with y=K /2kF. �This is relative to the free-electron Fermi
level, EF0.� It is clear that the y-dependent term in Eq. �3� has
a divergence, that is, ln	�1−y� / �1+y�	→−� at y=1. There-
fore, providing there is not too much reduction in V�K� re-
sulting from geometric structure factors, Eq. �3� manifestly
suggests that a tendency toward intersection with the Jones
zone, as well as potentially increasing values of V�K�, could
then be favored in eventual structural selection. As a conse-
quence, a zone plane therefore attains an effective width in k
space related to the issue of energy lowering. It is defined
through the observation that when the unperturbed Fermi
energy comes within a range defined approximately by a
typical lower zone plane energy splitting of E0�K /2�
− 	V�K�	, where as noted V�K� may include a geometric
structure factor when the lattice is decorated by a basis.28

In the elementary 1D example shown in Fig. 1�a�, it is
energetically beneficial to for the free-electron states near the
Fermi level to scatter around K /2 with k systematically in-
creasing toward K /2, or at energies lower than those corre-
sponding to the Bragg plane energy E0�K /2�, as we see also
from the form of the lower nearly free-electron band,
E0�K /2�− 	V�K�	. But in principle, a structure could be cho-
sen �with a smaller K� such that what is important is the
upper band, starting at E0�K /2�+ 	V�K�	, i.e., there is zone
activation with k systematically decreasing toward K /2. In
2D and 3D problems, when the free-electron Fermi circle or
sphere intersects with a zone plane, zone contact can occur in
principle from both below and above. Since the density of
states �DOS� peaks at E0�K /2�− 	V�K�	 and then drops al-
most linearly from then on to E0�K /2�+ 	V�K�	, the advan-
tage of placing more electrons at lower energies will not
necessarily be sustained, so that structural choices leading to
contact of Bragg planes from below will remain the more
favorable initial option.29

Although the chain of arguments starts with the Hume-
Rothery’s cogent observations on the systematics of alloying,
at least in relatively simple systems, the links between the
Fermi wavevector and the emerging structures are now con-
siderably more intertwined.30 It is important to restate that
these links involve electronic response to all orders and that
the reference state is the hypothetical, initially free, electron
gas prior to the introduction of an array of ions. However, it
is also apparent that the zone plane set �and hence the real-
space structure� chosen to lead to a significant �or “effective”
in the sense described above� stabilization might well also
lead to a preliminary, yet still useful, selection criterion for
eventual structural choice.

A useful distinction can also be drawn between structural
transitions arising from the Mott–Jones arguments as out-
lined above and those associated with the familiar Peierls
mechanism. The underlying physics of both originates with
manifestation of the periodic potential in terms of its effects
on states near the highest occupied energy �the Fermi en-
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ergy�. In the former case �zone activation�, the initiating
structure is potentially susceptible toward a deformation in-
volving the entire unit cell. This can be seen as an example
of a translationengleiche transformation,31 where a basic
translational symmetry is preserved �and the reciprocal lat-
tice vectors are also preserved�, but a point group symmetry
is at least partially lost. But in the latter, referred to often as
the Peierls instability �and analyzed frequently through
Fermi surface nesting arguments�, the associated structural
rearrangement usually leads to a supercell of the initiating
structure. This can be seen as an example of a klassengele-
iche transformation, where there is emergence of new recip-
rocal lattice vectors whose magnitudes are well suited to in-
duce energy lowering �and stabilizing� distortions via states
near the Fermi level.

II. A HIGH-PRESSURE EXTENSION OF ZONE
ACTIVATION INDUCED STABILITY

Since V�K� depends on the overall density of the system,
the same question can be raised again, first for an element �or
one component system� but under conditions where pressure
p, and to a much lesser degree, temperature T, become the
essential thermodynamic variables. In what follows, the ref-
erence system will be the uniform interacting electron gas
and we introduce the standard linear measure, rs, defined by
� /N=4��rsao�3 /3, where � is the volume of a unit cell, N is
the number of valence electrons in a unit cell, and ao the
Bohr radius. Going a step further, the arguments below can
also be extended to apply to ordered stoichiometric alloys,
with their own possibly more complex zones, leading to the
question: might such ordered alloys acquire their structures
through the action of an “effectiveness” principle for zone
planes that once again approach within a certain range of the
free-electron Fermi surface, this range being highly depen-
dent on the pseudopotentials? The number of such planes
will be of critical importance and is obviously related to the
issue of emergent complexity. Since the V�K�’s can be quite
dependent on rs, the involvement of pressure through the
Gibbs energy in structural choice and unit cell content is then
immediate. It should be noted that the discussion next pre-
sented is limited to systems with reasonably simple elec-
tronic structures and not subject to, for example, pressure
impelled s-d or similar transfers �a point we return to below�.

With pressure induced density dependence arising both
via the energetics of the underlying nearly free-electron sys-
tem but also through V�K�, structural changes can easily be
envisaged in the alloying process these leading to the satis-
faction of the zone-activation condition for arrangements
other than the initiating structure. Evidently, the size of the
zone �and whether what is now relevant is a Jones zone� is of
considerable importance in the sum appearing in Eq. �3�.
And again, it is otherwise tied to a notion of zone planes
becoming effective. Historically, it has also been seen via its
manifestation in pair potentials, mainly through their major
Fourier components when viewed in reciprocal space.32

In order to examine the issue of the density dependence
of zone activation in the static lattice context, we reformulate
the problem a little as follows. The system at hand is a neu-

tral macroscopic assembly of interacting ions and, as stated
above, interacting valence electrons, both systems obviously
being coupled. To the valence electron system, we therefore
add a uniform positive neutralizing background and to the
ions a background of identical density but opposite in charge.
Clearly the two charged continua thus introduced can be seen
to cancel and thus do not affect the initiating problem. How-
ever, by formally preserving them, this construction sets up
the familiar neutral interacting electron gas problem, with
well defined thermodynamic functions. And it also sets up
the problem of interacting but finite sized ions in a compen-
sating background, also thermodynamically well defined,
and a problem which is dominated by the Madelung energy.
Finally the construction also sets up an interaction between
electron and ionic charge distributions each, importantly, de-
fined relative to their respective average densities.

Accordingly, denote the ground state energy per electron
of the neutral interacting electron gas, as defined above, by
Eeg�rs�; we write this per electron in the standard way as

Eeg�rs� = Eke�rs� + Eex�rs� + Ecorr�rs� ,

where the kinetic, exchange contributions electron �given in
Rydbergs� are

3

5

�9�/4�2/3

rs
2

and

−
3

2�

�9�/4�2/3

rs
,

respectively. The correlation energy, Ecorr, is small for the
relatively free-electron-like systems we shall be considering
and will be omitted in what follows.

For the ion-plus-background ground state equivalent, the
static lattice assumption leads to the Madelung energy as a
dominant term but necessarily corrected by the finite ion-size
terms. The latter also enters into the electron-ion contribu-
tions in the long wavelength limit �see below�. The Made-
lung energy per electron has the usual form

Em = −
M

rs
,

where M clearly depends on structure but weakly so. To be
specific, if 9/5 �1.8� is the ion-sphere value,33 then M =9 /5
−�M, where �M =0.008 14 for bcc, 0.008 28 for fcc, 0.040
for sc, and 0.008 32 for hcp �and in fact 0.021 for hexagonal,
but with c /a=2.00�. This reflects the physical fact that, in a
charged system, most of the energy resides at long range,
where structural issues then recede. From the discussion
above, the energy resulting from the interaction of the itin-
erant electrons with the ions �in the presence of the mutually
neutralizing backgrounds� is just the quantity we refer to, per
electron, as Ebs�rs�. Viewed as a perturbation, it corrects the
uniform interacting electron gas energy formally to all or-
ders.

As a consequence, the total energy, per electron, of the
metallic system is
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E�rs� = Eeg�rs� + Em�rs� + EK→0�rs� + Ebs�rs� . �4�

Here EK→0 is the long wavelength limit of electron-ion and
ion-ion interactions, and it is dependent on the character of
the pseudopotential. By way of example, for the empty-core
pseudopotential, characterized by a core dimension rc, it
takes the simple form 3rc

2 /rs
3, per electron and it is a signifi-

cant energy. From Eq. �4�, the issue of structural preference
now focuses immediately on its last two terms but in fact,
mainly on the last in view of the above. For high pressure
experiments, what is quite essential is the Gibbs energy, per
electron, and under the stated conditions of low temperature
this is

G

N
= E +

pV

N
= E −

1

3rs

dE

drs

= EF0�rs� +
4

3
Eex�rs� +

4

3
Em�rs� + EK→0�rs�

�
1 +
d	EK→0�rs�	

d ln n
�

+ Ebs�rs�
1 +
dEbs�rs�
d ln n

� , �5�

where, and as is to be expected, the first term, EF0�rs�, in
G /N is the zero temperature limit of the chemical potential
of a noninteracting Fermion system, the Fermi energy. For
the empty-core pseudopotential, again as an example, the
second line in Eq. �5� is just 12rc

2 /rs
3 and is structure

independent.34 It is clear that the last line is then dominated
by Ebs itself. Note that the pressure is

p = − �4�rs
2�

dE

drs
, �6�

from which rs will follow straightforwardly for a given p
�the atomic unit of e2 /2ao

4, or equivalently, 14 720 GPa�.
The possible preference for higher zone introduction can

now be illustrated for the specific case where band structure
energies are reasonably given within linear response. There
are surely systems where band structure energies may be
dominated by induced electron densities originating with
quadratic and higher response in the electron gas �leading to
three-body and higher effective ion-ion interactions�. As cau-
tioned above, the zone-activation arguments will not neces-
sarily hold for these cases. But to illustrate the role of emer-
gent zone plane complexity further, let us first define wave-
vectors using density independent quantities; thus let y
=k /2kF and Y=K /2kF, where kF is magnitude of the Fermi
wave vector and K is a reciprocal lattice vector appropriate
to a chosen structure. To second order in pseudopotentials,
the band structure energy is then given by the well known
linear response result which �in Rydbergs per electron� is28,35

Ebs = �
Y�0

Ebs�Y,rs� = crs �
Y�0

Y2V�Y,rs�2�	�Y,rs�−1 − 1� ,

�7a�

where

Ebs�Y,rs� = crsY
2V�Y,rs�2�	�Y,rs�−1 − 1� , �7b�

Here c�121/3�2/3 when atomic units are used, and 	�Y ,rs�
is the electronic dielectric function. In this approximation,
Ebs�rs� is negative definite, which is of interest to the issue of
its subsequent changes. Neglecting, for the moment, further
corrections for exchange and correlation, epsilon is taken to
have the familiar Lindhard form for the homogeneous elec-
tron gas, namely

	�Y� = 1 +
rs

6.0292Y2
1

2
+

1 − Y2

4Y
ln�1 − Y

1 + Y
�� , �8�

In chemical terms, this band structure energy �Eq. �4�� can
generally be thought of as a sum of bonding energies these
originating with “unbound orbitals,” which are taken as ex-
tended free-electron states, which also subsequently “inter-
act” in an effective way through matrix elements of the form

k	V�r�	k+K�. To leading order the electron-electron inter-
actions are being accounted for through the random phase
approximation �RPA�, and as stated 	�Y ,rs� is the electronic
dielectric function.

From inspection of Eqs. �7a� and �8�, it is immediately
evident that for a given static ionic arrangement, the band
structure energy clearly depends of course on rs �and through
it, kF�, but just as clearly on the set of all reciprocal lattice
vectors �K� appropriate to the structure. It will also depend
on any possible basis vectors for non-Bravais lattices. To
elucidate the dependence of Ebs on a change in rs impelled
by pressure, we observe that dY /drs=0, the rate of change of
each Y component of the band structure energy with rs is
then


 �Ebs�Y�
�rs

�
T

=
Ebs�Y�

rs


1 + 	�Y�−1 +

2

	V�K�	
d	V�Y,rs�	

drs
�� .

�9�

Since, as noted, Ebs is negative, it follows that at the level of
linear response, the sign of this result hinges on the rate of
change of the 	V�Y ,rs�	, and the issue of stability then very
much devolves on the chemical character of the constituent
atoms. But if dEbs /drs
0, a structure may ensue which can
be stabilized under progressive compression simply through
the appearance of further zone planes and their associated
V�K�’s. Put another way, with K in the vicinity of 2kF, sig-
nificant values of V�K� may appear �the associated Bragg
planes forming a Jones zones enveloping the free-electron
sphere� even though at lower pressure such structures may
not be stable. This is what we may refer to as pressure-
induced Jones zone activation. Note once again that if the
physical system and its chemical characterization are such
that linear response is insufficient, the activation of zone
planes is by no means guaranteed.

Finally, it is worth re-emphasizing that rapid variation of
the dielectric function in the vicinity of 2kF plays a crucial
role25 in the concentration rule for alloys �Hume-Rothery’s
original systematization� when overall density is not signifi-
cantly altered. Through continuous alloying it is possible to
vary 2kF to match optimally with K. Here, and in contrast to
this, the density variations are such that K /2kF remains

114106-5 Double-diamond NaAl via pressure J. Chem. Phys. 132, 114106 �2010�

Downloaded 04 Aug 2011 to 128.253.229.242. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



largely constant for hydrostatic strains. The rapid changes in
the dielectric function remain of key importance.

III. Na–Al UNDER PRESSURE: A CASE STUDY

We now demonstrate the utility of the zone plane activa-
tion argument in finding novel potentially ordered alloy sys-
tems under pressure. By itself, the argument cannot point
directly to which new compounds might form under pres-
sure. However, what led us first to NaAl was simply chemi-
cal reasoning through analogy. Subsequently, zone plane ac-
tivation thinking comes into play and markedly helps us to
see the possibility of forming a NaAl alloy, of a certain very
interesting structure, under pressure.

A. Chemical analogy

Under standard conditions, sodium forms a 1:1 stoichio-
metric compound with indium and also with thallium, both
of these in the double-diamond structure, as does the com-
pound of lithium with aluminum. This elegant structure is
composed of two interpenetrating diamond networks �see
Fig. 2�, each accommodating a single element. NaTl is the
original Zintl phase, the progenitor of a tremendously useful
heuristic for looking at the structures of binary and ternary
compounds of electropositive atoms and main group
elements.36,37 The structure of KTl at one atmosphere is an-
other type of Zintl compound, containing octahedral Tl6

6−

clusters.38 At elevated pressures, KTl goes into the NaTl
structure too.39

On the other hand, sodium and aluminum are not known
to combine at ordinary pressures and temperatures.40 But the
possibility that these two elements may form compound�s�
under elevated pressure is as yet unexplored.41 The existence
of other compounds between groups 1 and 13 in the double-
diamond structure is an indication that zone plane activation
and stabilization may also be at work in these compounds,
with the given electron count and structure. It follows then
that for the 1:1 combination of Na and Al, the double-

diamond structure may well be susceptible to such stabiliza-
tion, only awaiting activation by external pressure.

The existence of such a compound is potentially of con-
siderable interest from another perspective. The known ter-
nary systems of Na–Al–H are important candidates for hy-
drogen storage. The adsorption and desorption of hydrogen
follow a rather complex pathway involving NaAlH4,
Na3AlH6, NaH, H2, and Al. In a recent calculation,42 it is
found in the chemically similar Li–Al–H system, that the
enthalpy of the reaction LiH+Al=LiAl+ 1

2H2 is in fact nega-
tive under standard conditions. One expects that a similar
reaction would be favored if the enthalpy of formation for
NaAl itself could be substantially reduced under compres-
sion. The existence of Na–Al intermetallic compounds, as
additional intermediates in these cycles, may potentially pro-
vide alternative pathways that can influence hydrogen release
and the reversibility of the chemical cycle.

We are then naturally intrigued by a very pertinent ques-
tion, namely, whether the double-diamond structure is also a
possibility for Na and Al compound formation, but now un-
der pressure. In the present work, we have limited ourselves
to 1:1 stoichiometry. There may well be other stoichiom-
etries that become stable at high pressure, but �1� the 1:1
stoichiometry is the simplest, yet is very common among
intermetallic compounds; �2� the focal point of our paper is
actually to provide a proof of principle for the zone plane
activation arguments �and chemical intuition� in guiding the
search for possible new intermetallic phases under high pres-
sure; �3� and given the complexity of structural theory, there
is as yet no practical method for surveying all stoichiom-
etries and the associated configuration spaces exhaustively.
Because of the chemical guidelines, the 1:1 NaAl stoichiom-
etry emerges as a very compelling start.

B. Jones and zone plane activation reasoning for
NaAl

What immediately follows is a semiquantitative analysis
of the stability of the possible NaAl phase in the double-
diamond structure, based on the zone plane activation type of
reasoning. The space group and associated Laue symmetry
of the double-diamond structure type suggest that the first
nonvanishing components of the lattice potential are for re-
ciprocal lattice vectors K= �111�, �220�, and �311�. A Bragg
plane associated with K is the plane in reciprocal space per-
pendicularly bisecting the vector K, at a distance K /2= �h2

+k2+ l2�1/2�� /a� from the origin. For an electron count of
four valence electrons per formula unit �LiAl, NaTl, or
NaAl� the magnitude of the free-electron Fermi wavevector
is kF= �3�2n�1/3=1.563�2� /a�, where a is the lattice param-
eter of the cubic unit cell �with the average electron density
n=32 /a3, see Fig. 2�. Therefore, the first Jones zone is the
polyhedron bounded by the �220� zone planes.18 The �220�
zone is a rhombic dodecahedron with 14 vertices �Fig. 3�a��,
which, as shown in Fig. 3�b�, can be viewed as a stellation of
a cube. The same picture of chemical bonding has been sug-
gested for intermetallic phases in the double-diamond �NaTl
structure� �see, for example, Inglesfield43 and also McNeil et
al.44�.

FIG. 2. A cubic unit cell rendition of the double-diamond structure. This
structure consists of two sublattices, and each forms a diamond network
�blue and green�. In this structure, each atom sits in the center of a cubic
cage, with four like atoms on one set of the tetrahedral vertices, and four
atoms of the other type on the remaining set of tetrahedral vertices of the
cubic cage. A full unit cells consists of eight of such cubic cages, with a total
of eight of atoms of each type. It can also be viewed as a face centered cubic
with a four-point basis.
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In Fig. 3�c�, we show the �220� zone and the free-
electron Fermi sphere at the electron concentration of the
double-diamond NaAl phase. Observe that the free-electron
Fermi sphere intersects all faces of the �220� zone, as ex-
pected. Thus, the double-diamond phase fulfills the “geomet-
ric” requirement for maximizing the effectiveness of the
higher zone activation mechanism. Its Fermi sphere is
bounded by and even maximally fills45 the volume of a
highly symmetric large zone and large numbers of states near
the Fermi energy are then susceptible to zone plane pertur-
bation.

The other condition required for stabilization within the
zone plane activation framework is a strong lattice �pseudo-
�potential associated with the large set of zone planes. As
noted in several recent articles,14,15 x-ray diffraction patterns
are often useful in revealing the strengths of lattice poten-
tials. Ackland and Macleod14 and Degtyareva,15,16 in particu-
lar, have productively explored this association. X-ray dif-
fraction intensity is proportional to the square of the Fourier
transform of the electron density, which for most elements
resides largely within the cores. Simulated x-ray diffraction
patterns indicate that for LiAl, NaTl, and NaAl in the
double-diamond structure the �220� reflection has the stron-
gest intensity �Fig. 4�, �see comment above� lying slightly
below twice the free-electron Fermi wavevector, 2kF. This
observation indicates that V�220� is likely to contribute sub-

stantially to the stability of the family of double-diamond
compounds. The idea then suggests itself that one might
gauge the existence of NaAl in the double-diamond structure
by first assessing the magnitude of 	V�220�	 and also how it
varies with increasing density.

Accordingly, in Fig. 5�a�, we plot the magnitude of
V�220� �Ref. 47� for NaAl in the double-diamond structure
as a function of rs, with N=32. With a moderate increase in
density, i.e., a decrease in rs ���rs

−3�, the magnitude of
V�220� increases almost fourfold. An even more revealing
quantity is the ratio of 	V�220�	 to the valence band width 	F,
which in the free-electron case is given by EF=50.1 eV /rs

2.
This quantity gives a measure of the importance of BZ plane
perturbation as gauged by the overall band energy. As shown
in Fig. 5�b�, the value of 	V�220�	 /EF also increases dramati-
cally with moderate increase in density.

In Fig. 6, we see that the overall second-order band
structure energy from NaAl in the double-diamond structure
becomes progressively more negative �hence more stabiliz-
ing� with increasing density. This suggests that NaAl may
indeed be stabilized by pressure.

From the structure of Eq. �7b�, it is readily seen that the
band structure energy can be decomposed into selected con-
tributions from V�K�’s, as we also plot in Fig. 6. At one
atmosphere �rs�2.6�, the band structure energy is dominated
by the contribution from V�111�. Other V’s for small �hkl�
have rather small contributions. As pressure and hence den-
sity rises, Ebs�111� is slightly increased �destabilizing�, but
concomitantly, Ebs�220� decreases rapidly by an amount
roughly equal to the drop in overall Ebs. The change in con-
tributions from all other K’s is quite small compared to
Ebs�220� and Ebs�111�. Therefore, from the band structure
energy analysis, pressure induced stabilization of NaAl in the

FIG. 3. �a� The �220� zone of the double-diamond structure type. �b� The
�220� Jones zone is shown as a stellation of a cube. �c� The intersection of
the �220� zone and the free-electron Fermi sphere �orange color�, whose
radius corresponds to the valence electron count of LiAl, NaTl, and the
proposed NaAl.

FIG. 4. Simulated diffraction patterns of LiAl, NaTl, and NaAl, all in the
cF16 structure. The powder patterns are generated by PowderCell2.4 �a
finite width is assigned to each peak to account for the finite sizes of crys-
tallites in a diffraction experiment, and correspondingly, the peaks are not
divergent Dirac-delta distributions� �Ref. 46�. We use the DFT optimized
equilibrium structure of NaAl �a=7.04 Å, see later�. The experimental lat-
tice parameters for LiAl �6.37 Å� and NaTl �7.46 Å� are used. The first three
diffraction peaks are labeled with their indices.

FIG. 5. How �a� 	V�220�	 and �b� 	V�220�	 /	F vary with rs �density increas-
ing to the left�. For this qualitative analysis, we use the empty core pseudo-
potential �Ref. 47�, which has a form: v�

ps�k�=−�4�Z� /�k2�cos�kRc,��,
where � denotes the element, Z� is the charge of the ionic core and � is the
unit cell volume. The core radii, Rc, for Na and Al are 1.66 and 1.12ao,
respectively. In these plots, rs is given in units ao. 	V�220�	 is calculated for
a 16-atom cubic unit cell. The lattice potential component is then
VK=�−1
�S��K�v�

ps�K�, where S��K� is the geometric structure factor of
ion � ��=Na and Al�.
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double-diamond structure should arise mainly from the con-
tribution from V�220�, completely in accordance with zone
plane activation reasoning above. The essential condition
here is the closeness of the BZ planes to 2kF. In the case of
NaAl in the double-diamond structure, the �220� contribution
indeed enjoys the greatest stabilization as density increases.
The contributions from −4�h ,k , l�4 differ from the overall
Ebs in the rs range only by a roughly constant shift which
indicates that the sum of contributions from zone planes as-
sociated with high K’s, while appreciable, is fairly insensi-
tive to density change.

A stability analysis of this sort is dependent upon the
assumption that it is valid to use the simple pseudopotential
from an independent electron approach for semiquantitative
assessment. In fact, our calculation takes into account
electron-electron interactions within the RPA �exchange and
correlation contributions should not lead to significant cor-
rections�, and this matter will be addressed in the density
functional approach to be described below. More impor-
tantly, we see from Eq. �6� that Brillouin and Jones zone
activation by pressure should be present, arising largely from
an increase in the density. In addition, we have demonstrated
recently that the simple empty-core pseudopotential can be
successfully used to explain some aspects of the structural
complexity of CaLi2 under high pressure8,48 and can account
for subtle features in the band structures derived from den-
sity functional theory �DFT� calculations. In spite of its sim-
plicity, this analysis should therefore suffice for the initial
argument in this context.

All of the observations above indicate that for NaAl in
the double-diamond structure, the Jones zone planes become
increasingly activated as the density increases, suggesting in
turn an electronic stabilization of this phase by pressure.
These arguments form the background of understanding of
the structural problem which can then followed by accurate
first principles calculations, to be described next.

IV. THE DOUBLE-DIAMOND NaAl PHASE AND DFT

A. DFT energetics

Guided by the forgoing perturbation analysis, we per-
formed DFT- generalized-gradient approximation �GGA�
calculations to obtain an accurate 0 K enthalpy of formation
of NaAl in the double-diamond structure.49 For an assumed
static structure, we calculated the total energies with and
without incorporation of the 2s and 2p electrons of sodium in
the underlying pseudopotential. The calculated enthalpies are
plotted as functions of pressure �Fig. 7�. Both types of cal-
culation yield completely similar trends. The enthalpy of for-
mation �hf� of a potential Na–Al alloy phase has the standard
definition

hf�NaxAl1−x� = h�NaxAl1−x� − xh�Na� − �1 − x�h�Al� ,

�10�

where all enthalpies are given on a per-atom basis �and at the
same pressure�, and for x=0.5 in NaAl. The enthalpies of Na
and Al are calculated for the more stable phases at a given
pressure. It is known that Na undergoes a series of phase
transitions in this pressure range, as bcc→ fcc→cI16 �and
even more complex phases at higher pressure�, while Al is
quite stable in the fcc structure between 0 and 100 GPa.

We confirm that compound formation is not favored at
one atmosphere and in the ground state, where the hf is well
over +100 meV /atom, consistent with the fact that no com-
pound has been observed between these two elements. But as
pressure increases, the value of hf drops rapidly. However,
we also find that at the relatively low pressure of 10 GPa
�rs=2.4�, the reaction forming the compound turns neutral
with respect to the separated elements, after which it be-
comes enthalpically preferred. At 55 GPa, hf passes through
a minimum of �80.0 meV/atom. Subsequently, the value of
hf increases slowly as the pressure rises toward 100 GPa, but
still remains significantly negative.

The DFT calculations suggest that above 10 GPa NaAl
�81% equilibrium volume� with the double-diamond struc-
ture is stable with respect to the elements. But is this the only
structure likely? We have also performed an extensive struc-

FIG. 6. Band structure energy, per electron, of NaAl �density increases to
the left� in the double diamond structure, with the same pseudopotential
used previously �Fig. 3� and with the Lindhard dielectric function. The over-
all band structure energy �solid line� and contributions from various BZ
planes are plotted as function of rs �2.0�rs�2.6�. For a set of hkl we sum
over all distinct permutations ��h�k� l�, as they are equivalent because of
the cubic symmetry. A partial sum for −4�h ,k , l�4 �solid line with open
circles� is also shown.

FIG. 7. Calculated enthalpy of formation per atom of NaAl from DFT-GGA,
with and without the 2s and 2p electrons of Na in the self-consistent fields,,
as different forms of pseudopotentials �PP� are employed �see Appendix�.
Pressure is obtained by numerically evaluating p=−�E /��, where E is the
energy per unit cell each with a volume �. We expand the total energy with
a polynomial of the form: E=
m�m��m−2�/3, where the sum is from m=0 to
m=6.
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tural search to identify other possibly competing structures
for NaAl compounds. Our methodology includes both a ran-
dom search method and the screening of structures suggested
by Pettifor’s binary structure map.12,50,51 We have also
looked at the known KTl structure at 1 atm. The structures
explored are detailed in the auxiliary materials,50 but to date
none have emerged as competitive when compared to the
double-diamond structure. We therefore predict this ordered
alloy can be fabricated under pressure. And the detailed cal-
culations further support the general idea that the zone plane
activation type of reasoning has significant value as a guide
to proposing potential structures.

B. Electronic structure of the double-diamond NaAl
phase

Since the proposed stabilization mechanism is electronic
in origin, its presence should have a visible effect on the
electronic structure of the NaAl compound as pressure in-
creases, especially near the Fermi level. The matrix element,

k	V�r�	k+K� should increase in magnitude for a favorable
zone plane activation mechanism, leading to an increasingly
large level splitting. Since this mechanism mainly influences
the states near EF, it is expected to result in a depletion of the
electronic DOS around the Fermi level. In Fig. 8, we show
the valence electronic DOS at 0, 60, and 120 GPa for NaAl
in the double-diamond structure.

Per electron, the DOS of the double-diamond phase has
a prominent pseudogap near the Fermi level, indeed indicat-
ing a large pseudopotential at the large zone planes. This
pseudogap is also evident in a number of calculations on
NaTl.44,52–54 More significantly, with increasing pressure
there is a manifestly progressive depletion of states around
the Fermi level, as indicated by the increasingly wider and
deeper pseudogap at EF. From 0 to 60 GPa, the population of
states at the Fermi level drops by nearly 50%. The gap wid-
ening is much less visible as pressure increases from 60 to
120 GPa. There is also a persistent subvalence pseudogap �at
�5 eV at 1 atm, �6.5 eV at 60 GPa and 6.8 eV at 120 GPa�,
which is mainly a manifestation of the strong level splitting,
traceable to the presence of significant �111� component of
the lattice potential �this can be readily deduced from the
DFT-GGA band structure, see Ref. 50�.

We notice the resemblance of the DOS of NaAl to those
of LiAl,55 C, Si, and Ge, except that NaAl is metallic while
C, Si, and Ge have band gaps under normal conditions.
Given the relative electronegativities, it is likely that Al in
NaAl is in an “Al−” configuration, with four valence elec-
trons, in accord with a Zintl view of the double-diamond
structure.36,37 This is the correct number to form a covalently
bonded anionic diamond network that is isoelectronic to
group 14 elements in the diamond structure. It is then useful
to examine the character of bonding, and for this the simple
extended Hückel method56 is ideal. We proceeded to param-
eterize the extended Hückel model to yield a DOS for NaAl
in the double-diamond structure, and this qualitatively re-
sembles the Kohn–Sham DOS �Fig. 8�b��. The extended
Hückel parameters are listed in Table I.

From these extended Hückel calculations, we see that
the gap at �5.2 eV separates s and sp manifolds. The lowest
manifold �from �8 to �5.2 eV� is dominated by s states of
Al, with small contributions from Al p and to a much lesser
extent, s of Na. The calculated maximum at �6.5 eV coin-
cides with the transition of the character these orbitals from
being bonding to antibonding, judging from the overlap
population analysis57 �not shown�. The sp manifold �from
�5.2 to �3.8 eV� again has a maximum that coincides with
the transition from antibonding to bonding characters. Above
�3.8 eV and up to the Fermi level, the orbitals are localized
mainly on Al and, and are predominantly p in character. The
pseudogap around �3.8 eV reflects mainly the s-p separation
of Al. Overall, the occupied valence bands arise mostly from
the Al s and p states, confirming that Al is indeed anionic in
this compound.

Notice that while the pseudogap �in the vicinity of the
Fermi energy� widens with pressure increase, the valence

FIG. 8. �a� Valence Kohn–Sham electronic DOS per electron of the double-
diamond phase at 0, 60, and 120 GPa. The energy scales have been shifted
such that Fermi energies at all densities are at zero eV �the vertical dot-
dashed line�. �b� DOS of NaAl �at one atmosphere� calculated with the
extended Hückel method, with s and p projections for both Na and Al.

TABLE I. Extended Hückel parameters for Na and Al. The H’s are the
diagonal elements of the tight-binding Hamiltonian and �’s are the expo-
nents of the Slater-type orbitals. The off-diagonal elements are calculated
according to Hij =�Sij�Hii+Hjj� /2, where Sij is the overlap integral and �
=1.75 is the Wolfsberg–Helmholtz mixing parameter.

Element H�3s� /eV ��3s� /Å−1 H�2p� /eV ��2p� /Å−1

Na �4.10 0.733 �2.00 1.233
Al �7.30 1.167 �4.50 0.967
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band width also increases with pressure �Fig. 8�a��. For pres-
sures of 0, 60, and 120 GPa, the rs values are 2.55, 2.14, and
2.00, respectively �for Na and Al under ordinary conditions,
its values would be 3.93 and 2.07, respectively�. From a
free-electron point of view, we would expect the valence
band widths, corresponding to the rs values, to be 7.7, 10.9,
and 12.5 eV respectively, which compare very well with the
band width from DFT-GGA calculations. Band narrowing
under pressure1 is not seen in this system up to the maximum
pressure considered here. Zone plane activation stabilization
arises from the increase in the magnitude of 
k	V�r�	k+K�
alone.

V. ZONE PLANE ACTIVATION AND ITS RELATION TO
BONDING

Pseudogap widening in the vicinity of the Fermi level
associated with the zone plane activation mechanism war-
rants a more detailed assessment of the bonding patterns near
the Fermi level. As we pointed out, the proposed mechanism
for stability of NaAl arises mainly from the lattice potential
component V�220� in the nearly free-electron context. In a
broader context, the effect of the lattice potential on initially
free electrons is the introduction of localized atomiclike
states �or eventually Wannier-like states�. In the extreme case
where we have full nuclear potentials and infinite planewave
number, we should begin to reconstruct the full chemistry.
By this we mean that we will have initiating atomic orbitals,
which, upon inclusion of mutual interactions and adaptation
to the translational symmetry, will give rise to crystal orbitals
that are linear combination of atomic orbitals.

One essential connection between the two extreme inde-
pendent approaches to electronic origin of cohesion in the
crystalline state �nearly free-electron and localized chemical
bonding� is the nodal structure of wave functions, reflecting
the symmetry relations between the Hamiltonian and the re-
sultant Bloch states. The V�220� lattice potential component
will be associated with a k vector that satisfies the condition:
k ·K=K2 /2, where K= �220�. This leads to the condition that
kx+ky =4� /a, a condition placing a constraint on the loca-
tions of the nodal planes of the planewave eik·r �for both real
and imaginary parts�, which are the solutions to k · �r+ro�
=n� �where n is an integer and ro is an arbitrary shift�.

The importance of the nodal structure lies in the fact that
k’s are not only the wavevectors of planewaves, but also the
labels of the translational symmetry of the Bloch states. In
other words, the k’s must be such that eik·r transforms as an
irreducible representation of the translational symmetry
group of the lattice. In particular, if k and K are collinear,
then for K= �220�, it follows that k= �110�. The nodal planes
are then given by the equation x+y=na /2. Not surprisingly,
these are the �220� Miller index planes. In Fig. 9�a�, we show
a partial unit cell relevant to our bonding analysis �which is
further developed below�. The two cubes are two of the oc-
tants of the full unit cell shown in Fig. 2. The nodal planes
corresponding to k= �110� are shown in Fig. 9�b�.

Thus, in a localized chemical picture, the electronic
states �linear combinations of atomic orbitals �LCAOs�� cor-
responding to k= �110� should reflect the implied nodal

structure arising from the nearly free-electron approach.58

The DFT-GGA calculations clearly show that the states quite
near the Fermi level include two sets of threefold degenerate
orbitals, corresponding to three sets of distinct �220� Miller
planes. In the Wigner–Seitz projection, these band states are
entirely associated with Al and have zero contributions from
the valence states of Na. Moreover, these orbitals are com-
pletely of p character. Obviously, the absence of s character
in the Kohn–Sham wave functions at k= �110� is a conse-
quence of the presence of the nodal planes, as shown in Fig.
9�b�.

One set of the threefold degenerate orbitals is at energy
slightly below the Fermi level and one of these orbitals is
shown in Fig. 9�c�. We see that the p orbitals of Al in the
lower front cube show dominant pp�-type bonding interac-
tion along the body diagonal �look at the phase relationship
of the center orbital with the two orbitals in the bottom face�.
Judging from the separations for both cubes in Fig. 9�c�, the
bonding along their faces includes weaker, pp� bonding and
pp�� antibonding interactions. The other two orbitals in this
threefold degenerate set are similar to this one, with p orbit-
als oriented perpendicularly to the other two sets of �220�
Miller planes. The corresponding crystal orbital at an energy
slightly above the Fermi level is shown in Fig. 9�d�. In this
case, the most important interaction is again of pp�-type, but
antibonding �along the body diagonal of the lower front
cube�. And as in the former case, the secondary pp� bonding
and pp�� antibonding interactions remain present along the
faces of the cubes.

As anticipated, at k= �110�, the orbital picture of the
electronic states displays the same nodal structure as the
free-electron states that participate in the zone plane activa-
tion mechanism. In this localized bonding picture, a gap is
expected to separate these states due to the dominant pp�
and pp�� interactions. Indeed, in DFT-GGA calculations,
there is a small but persistent gap across the Fermi level

FIG. 9. �a� A partial unit cell of the NaAl structure, showing two of the
octants of the full cubic unit cell to emphasize the local bonding environ-
ment of Al. �b� Nodal planes corresponding to k= �110�, with the partial
structure of part �a� of this figure is shown as two cubic boxes. �c� The
orbital at k= �110�, below the Fermi level, which has an overall bonding
character. �d� The orbital at k= �110�, above the Fermi level, which has an
overall antibonding character. We use a representation for p orbitals of the L
shell �2p� for clarity, though the true p orbitals should be 3p, and have a
radial node as well. This simplification should not affect our argument. We
use orange and green to represent different phases of the p-wave functions.
The color-coded dotted lines represent the type of interaction between adja-
cent p orbitals: blue—bonding and red—antibonding.
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between these Kohn–Sham levels, which increases with
pressure. At ordinary pressure, the gap is 41 meV. It in-
creases to 49 meV at 20 GPa and then to 64 meV at 60 GPa.
The growth of the band gap in a LCAO way of thinking is
attributable to the decreased interatomic spacing and corre-
spondingly increasing orbital overlaps. This growing gap is
consistent with the growth of the pseudogap around the
Fermi level, as we have seen in Fig. 8�a�. Thus, a bonding
analysis based on localized p orbitals reproduces both the
symmetry of the Bloch states and also the stabilizing effect
of the Jones or higher zone plane type of activation, which
was originally proposed within a nearly free-electron theory.
A bridge is thus formed between this way of thinking and an
orbital picture of chemical bonding.

VI. CONCLUSIONS

We began with a brief account of the concept of Hume-
Rothery’s systematization and empirical rules for stability of
metals and intermetallic compounds, as well as the succeed-
ing developments of Jones, and then Mott and Jones, and
others. We then extended the Mott–Jones argument to a gen-
eral zone plane activation approach to accounting for struc-
tural selection as the density increases. Here we provide a
theoretical basis for the continued utility of the Jones zone
concept when pressure becomes a nontrivial thermodynamic
variable. Specifically, we have examined how the second-
order band structure energy with a Lindhard form of elec-
tronic screening may change with density �suggesting again
that the divergence of the slope of the electron screening
function near 2kF� may also have an important effect on any
ensuing stability. We have then further extended these no-
tions to pressure-induced Jones zone activation.

As an example, we have demonstrated computationally
that an ordered intermetallic compound of NaAl in the quite
striking double-diamond structure can become stabilized by
pressure. More importantly, this compound served us as a
little laboratory for �a� examining the detailed working of
zone plane activation reasoning for structural stability and
�b� forging a connection between free-electron, nearly free-
electron, and LCAO pathways.

The case for experimental synthesis of NaAl with com-
pression therefore seems quite compelling, given our compu-
tational results. It may also be of interest from the following
points of view. First, the existence or nonexistence of the
predicted compound and its actual structure will offer valu-
able insights regarding our current understanding of struc-
tural principles of intermetallic compounds under high pres-
sure and also the accuracy of first-principle calculations in
terms of predicting phase stabilities. Second, the existence of
NaAl at moderate compression may prove useful in tailoring
the reaction pathways in the decomposition of Na–Al hy-
dride systems, as argued earlier. Last, Al is a superconductor
at ambient pressure �TC=1.18 K�, and its TC decreases with
increasing pressure.59 Possible superconductivity in Na at
normal and elevated pressures has not so far been estab-
lished. It will be intriguing to scrutinize the superconductiv-
ity, or the absence thereof, of the binary NaAl system of
simple metals under pressure. Might an enhanced electron-

ion interaction along with an eventual rise of states near the
Fermi level come together in determining the possibility of
superconductivity in this compound?

APPENDIX: COMPUTATIONAL METHODS

We use the DFT approach,60 as implemented with plane-
wave basis sets61 and the projector-augmented wave
method,62 within the static lattice approximation. These are
applied to study the structural and electronic behavior of
proposed Na–Al alloys in a pressure range from 0 to 100
GPa, which corresponds to an approximately twofold com-
pression. Exchange-correlation functionals in Perdew–
Berke–Ernzerhof form63 within the GGA �Ref. 64� are uti-
lized throughout. We used two versions of pseudopotentials
for sodium. The first version only includes the 3s electrons as
the valence set. To account for possible overlapping of core
wave functions of Na as interatomic separation is reduced,4

we also use a pseudopotential for sodium treating only the 1s
electrons as the modeled core states �pseudocore radius
=0.767 Å�, and the 2s, 2p, 3s, and higher atomic states as
the valence set. The first of these forms for the Na pseudo-
potential cannot reproduce the observed structural preference
between bcc and fcc at most pressures, but the second does.
However, the difference between the relative enthalpies cal-
culated from the two choices of pseudopotential is small
�within 5 meV/atom�, and accordingly we use the first form
for fast structural preselection, while then comparing the re-
sults with those from the second. In view of the high charge
on the aluminum core �+3� and hence the relatively small
ionic radius, we employ a pseudopotential that treats only the
3s and 3p states as valence, with a small pseudocore radius
of 0.899 Å.

The total energy evaluation for each structure at a given
density is carried out in three steps. First, a given starting
structure is preoptimized for a specified external pressure by
varying simultaneously the unit cell shape and size and the
atomic positions. The external pressure is set by adding a
constant stress to the diagonal elements of the stress tensor
and then minimizing the enthalpy. Second, the preoptimized
structure is subsequently reoptimized at constant density,
minimizing the total energy with respect to cell parameters
�at constant volume� and ion positions.

We use the Monkhorst–Pack scheme65 of k-point sam-
pling for the zone sums, and select the number of k points to
achieve a convergence in total energy within
�1 meV /atom. In the final step, the total energy of each
optimized structure is calculated again with the more accu-
rate tetrahedron zone summation with Blöchl correction.66

All calculations using the Na pseudopotential that include a
supposed set of core states in the valence set are carried out
with a planewave cutoff of 1200 eV. Calculations with the
valence-only pseudopotential use a cutoff of 500 eV.
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