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Theory of Polyhedral Molecules. II. A Crystal Field Model
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A crystal field model is developed for finding the molecular orbitals of polyhedra of identical atoms. The
valence electrons are taken as moving in a one-electron crystal field set up by an effective nuclear charge
centered at each atom. The field is expanded in spherical harmonics. Zeroth-order solutions are found from
the spherically symmetric term, while higher terms are treated as a first-order crystal field perturbation.
Polyhedra of hydrogen and of boron or carbon are considered. For the latter special attention is given to
the identification of out-pointing orbitals, i.e., the orbitals used in bonding, Comparison is made between
crystal field and LCAO energy levels. It is shown that they become more alike when, in the latter, a(2s) is

made much lower than «(2p).

I. INTRODUCTION

E will concern ourselves in this contribution with

the energy levels of highly symmetrical polyhedral
molecules. The symmetries considered are Tg, On, In.!
Known molecules of T symmetry are Py, Asy, and the
framework is found in B4Cls. O, symmetry is possessed
by the B¢? unit in molecules such as CaBg,? and the
cube-octahedral Bis™? unit in uranium and zirconium
borides.? The I symmetry has been realized for the first
time in the BsH;2 72 ion.* There are also the hypothetical
polyhedral alkanes C,H, (Ts-tetrahedrane), CsHs
(Op-cubane), CyHzy (I5-dodecahedrane).

The LCAO-MO calculations for these polyhedral
systems are fairly complex and the aim of this work has
been the search for a scheme by which one could easily
obtain the sequence of orbital energy levels of such

1 The group theoretical notation is that of E. B. Wilson, J. C.
Decius, and P. C. Cross, Molecular Vibrations. (McGraw-Hill
Book Company, Inc., New York, 1955).

2L, Pauling and S. Weinbaum, Z. Krist. 87, 181 (1934).

(1“9 6Vg) N. Lipscomb and D. Britton, J. Chem. Phys. 33, 275

4 A, R, Pitochelli and M. F. Hawthorne, J. Am. Chem. Soc.
82, 3228 (1960). J. A. Wunderlich and W. N. Lipscomb, 7b:d. 82,
4427 (1960).

compounds. Such a scheme should be utilizable for the
simplest predictions, i.e., for judging when a closed
electronic shell was realized and which electronic
transitions were probable. We have been encouraged
and guided in our treatment by the simple yet quite
successful application of the free electron model to
conjugated systems.®$

We shall confine the discussion of this paper to the
case of identical nuclei arranged as a highly symmetrical
polyhedron. Although there are few such polyhedra
that are stable in themselves (e.gz., P.), stability is
obtained through bonding with hydrogen or other
atoms (e.g., B«Cly, BpHyz2). In ByH;s72, for example,
the BH bonds are formed from the so-called outpointing
orbitals of the Bj2 polyhedron. Hence the identification

§ N. S. Bayliss, J. Chem. Phys. 16, 287 (1948); Quart. Revs. 6,
319 (1952); H. Kuhn, J. Chem. Phys. 16, 840 (1948); Chimia 9,
237 (1955); W. T. Simpson, J. Chem. Phys. 16, 1124 (1948);
K. Riidenberg and C. W. Scher, #bid. 21, 1565 (1953); K. Riiden-
berg and R. G. Parr, ibid. 19, 1268 (1951); J. R. Platt, J. Chem.
Phys. 17, 484 (1949); Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, to be published).

¢ The first steps toward a free electon theory for boron com-
pounds have been made by G. C. Pimentel and K. S. Pitzer, J.
Chem. Phys. 17, 882 (1949); N. H. Eberhardt, B. Crawford, Jr.,
and W. N, Lipscomb, J. Chem. Phys. 22, 989 (1954).
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TasLe I. Nonvanishing angular coefficients in the expansion of the nuclear-electronic attraction.
Symmetry  Geometry Vo/Z Vi/Z Ve/Z
Ta tetrahedron® —4  (14/9) (4r/NH YO+ (/1) VA4V | (—8/9) (4x /130 [ ¥ — (7/)¥ (Ve Y ) |
O octahedron —6 (—=T7/2) (Ax/NH Vo4 (5/14) (Y4 YY) ] (—3/4) Ar/13N [V~ (7/2)H( Y+ Vi) |
Or cube —8  (28/9) (4x/ON [ VO (5/14)H(VE+ YY) ] (—16/9) (4n/13) [ VO — (7/2)¥ (Ve + V) ]
Ox cube-octahedront  —12  (7/4) (4r/NH YO+ (5/1)3 (V4 VY] (39/16) (4x/13) [ V8 — (T/2)}(Yet+ V) |
I icosahedron —12 (—132/15) (4x/13) [ Y+ (7/11)}( V4 ¥) |

® For the tetrahedron there is also a nonvanishing Va which does not contribute to the crystal field splitting in first order.
b The cube-octahedron may be constructed by connecting the midpoints of the edges of a cube or an octahedron.

of such orbitals is of great importance in discussing
stability. In the next section we present a crystal field
model for polyhedra of identical nuclei. We then show
how the crystal field molecular orbitals (CF-MO’s)
correlate to the LCAO-MO’s for polyhedra of hydrogen
atoms. We conclude with the more interesting case of
polyhedra of boron or carbon atoms and the problem
of identifying outpointing orbitals.

II. CRYSTAL FIELD MODEL

The Coulomb interactions between an electron 7 and
a set of V nuclei ¢ may be expanded in a series of
normalized spherical harmonics.

N Zg N o 1 40 f,'<l
—_ —_—— vm ei’ .
""Z‘:rf" le:lgm——l U+1 rint L CAD)
f,;<l
. Y[_""(Bm ¢U) = Zlvmo (1)

For the case of highly symmetrical polyhedra of nuclei
with identical charges Z this Laplace expansion becomes
quite simple. In Table T we list the first few non-
vanishing terms in these expansions for the tetrahedron,
cube, octahedron, cube-octahedron, and icosahedron.

QOur crystal field model for polyhedra of identical
nuclei considers each valence electron as moving in a
one-electron field set up by an effective nuclear charge
Z located at each nucleus. This field can be thought of
as arising from the true nuclear charges shielded both
by the inner shell electrons and the other valence
electrons. Hence in adjusting Z (our only parameter)
we partially take into account electron interaction,
which will not be considered explicitly.

Approximate wave functions for this crystal field
Hamiltonian will be obtained in two steps. First we
solve the one-electron problem retaining only the first,
spherically symmetric term of the Laplace expansion.
Thus the one-electron zeroth-order Hamiltonian is

HP=—3}Vi—(NZ/r>), @)

where 7= R for ;<R and r =7, for ;> R, N is the
number of atoms, and Z is the effective nuclear charge.
From this Hamiltonian we obtain a set of zeroth-order
energy levels and molecular orbitals which will have

the form Yo m(1:) = ¥V i(8;, ¢:) Rat(r:). The second step
of our treatment introduces the higher spherical
harmonics given in Table I as a first-order perturbation
that lifts the degeneracy in the quantum number [ for
functions of a given #. (In Appendix I we discuss
the validity of this approximation.) This procedure
enables us to use the full apparatus of the crystal field
theory for evaluating matrix elements.’

To carry out step one, we refer back to the work of
Wannier®* and Chen?® who studied in detail the eigen-
functions of the zeroth-order Hamiltonian (2). A
numerical matching of spherical Bessel functions and
confluent hypergeometric functions for each R is
necessary to obtain exact eigenvalues. However, one of

r (au=0.534)
o] 2 4 6 8 10 12 14
T i T T T 1 )
= - 4p, 5%, 6h
3s,44.59
3p,4f
Q.2F
| 25,34

ENERGY {au=27ev)

__N2Z
L VEoTo NZe2,R=25

1.0

FI?.)]. The spherical potential and the energy levels given by
Eq. (3).

7 See for example: J. S. Griffith, The Theory of Transition Melal
Ions (Cambridge University Press, New York, 1961).

3 G. H. Wannier, Phys. Rev. 64, 359 (1943).

® T. C. Chen, J. Chem. Phys. 29, 347, 356 (1958), where a one-
center model for the cyclic polyenes is discussed.
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TasLe IL The reduction of spherical symmetry to Ty, Os, Is.
I Ox Ts Iy
0(5) Alg A], Ag
1(?) Flu Fz F].u
Z(d) E0+F2a E+F, H,
3N Asu+Fru+Fau A+ Fi+ 1 Fu4-Ga
4(g) Ayt Eg+ Fro+Fy A+ E+Fi+Fy G,+H,
5(}1) Eu+2F1u+F2u E+FI+ZF2 Flu+F2u+Hu
6(3) At A+ EptFig+-2Fy, A4 As+ E4+Fi+2F; A+ Fyu+G+H,

Wannier’s explicit limiting formulas is accurate to
about 159, or better for the parameter range considered
by us, and this will suffice for the qualitative predictions
we seek. In the case of large (8VRZ)} the eigenvalues
of the Hamiltonian (2) are approximated by

_ —(Vz)?
E‘”z[n— (2141) /4— (2NRZ)Y/x ] (3)
n=1,2,3, -,

1=0,1,2, +++, n—1,

where 7 and [ are the usual spherical quantum numbers.
In united atom notation, the “magic scheme” for this
potential has the energy levels in order of increasing
energy as

152p(253d) (3p4f) (354d5g) (4p5f6h) (4s5d6gT3) -+, (4)

where approximately degenerate levels are grouped in
parentheses. Figure 1 shows the zeroth-order potential
well and the energy levels as obtained from (3) for
NZ=2and R=25 a.u.

The second step of our model, the introduction of
the first-order energy splittings by the higher spherical
harmonics of the crystal field, will only be carried out
qualitatively, The splittings that occur can be de-
termined group theoretically. Thus, for example, the
five d orbitals (/=2) in a polyhedron of O, symmetry
split into two groups of three and two degenerate
orbitals f3; and e, respectively; f orbitals (!=3) in I,
split into two groups of three and four f», and g,. The
crystal field splittings for [ up to 6 and Ty, Os, and I
crystal fields are given in Table II. It would be nice if
the order of the energies of the split levels were given
by a simple rule. Unfortunately this is not so. The
order of the splitting may differ between polyhedra of
the same symmetry. Thus for 4 orbitals in O), symmetry
fro has lower energy than e, in the cube and cube-
octahedron, but higher energy in the octahedron.
Moreover, forI>3in Tyand O, and />4 in I, the order
of the splitting will depend on the radial functions
Ra(r), since it is necessary to know the relative
magnitudes of two or more crystal field terms V..

Since we are seeking only qualitative results, we shall
not attempt to determine the ordering in such cases.

111, SIMPLE CASE. HYDROGEN ATOMS

As a simple illustration of our procedure we will
consider the energy levels of a set of hydrogen atoms
located at the vertices of some polyhedron. In the
Hiickel-type LCAO-MO scheme® one would approach
the problem as follows. The usual eigenvalue problem
is set up, that is, we solve the set of equations

(ar_" E) CT+Z, (Bn_ ESTI) C'=0
' r=1,2,3,-+-,N, (5)

where the ¢, are the coefficients of the rth 1s orbital in
the molecular orbital; i.e.,
N

p(r)= Z;Crd»(ri) s (6)
Here o, and 8., are the usual “Coulomb” and “reso-
nance” integrals. One then proceeds to make some
assumption about the resonance integrals. One common
assumption sets equal to zero non-nearest neighbor
interactions. A somewhat better assumption sets
Brs= K Srs, where K is a constant. The secular equation
is of degree IV; however, the high symmetry enables
one to write down easily symmetry orbitals and reduce
the complexity of the problem. In Table TIT we give
the ordering of such LCAQ-MO levels, calculated with
the above-mentioned assumption of Br,=KS., for
some common and not so common polyhedral
configurations.

To approximate a polyhedron of hydrogen atoms by
the crystal-field model, we begin by taking only the
radially nodeless orbitals from the ordering (4). We
reject radially noded orbitals since the LCAO orbitals
have only angular nodes. Thus the zeroth-order crystal
field orbitals are

152p3d4f5g6h« - -. )

We then use the reduction properties of Table IT to find

0 See for example, B. H. Chirgwin and C. A. Coulson, Proc.
Roy. Soc. (London) A201, 196 (1950).
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TasLE IIL Representations and orbitals for polyhedra of hydrogen atoms.

CF-MO=

LCAO-MO-

4f 3¢

3d

2y
Ja

Representations 1s

Geometry

Symmetry

N

thfz

a1

A+-Fp

tetrahedron

T4
Oy

agfiug,

S

a1

A Ig+ Flu+ Er,-

octahedron

Aipfiufe 020

a2y

Sou

f 2g

Jia

[P

Alu+A 2u+ Flu+ FZa

cube

Oy

algf] uflneaf 2u
aqul ukaqu
a1fsef201

Jto

S

a1y

Aly+En+ F1u+ F20+ Fiu
At Fry+Fat-H,
24,4 E+2F,

cube-octahedron

Oy

12
12
10

f u

flu

ag

icosahedron

Iy

a

efz

f

ay

adamantane typeb

Ta
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:_;. representations as the LCAO-MO’s.
. Ny Consider, as a simple example, the octahedron. The
g 5 order of LCAO-MO’s constructed from 1s orbitals is
3 “5’ ?; @i, fiu, €. The crystal-field orbitals are Is(ay), 24( fu),
B fg :z; E. 3d(e,, fx), etc. We choose the six lowest CF levels of
EY 35 3 @19, f1u, ¢, and find that they are in the same order as
T 7 3 the LCAO levels. A comparison of the CF and LCAO
order for the orbital energy levels of various hydrogen
< polyhedra is given in Table III. The agreement between
the two is seen to be excellent.
T3 It should be noted that the conclusions of this section
k) 2 T ,
§ &3 should apply not only to 1s orbitals but to any set of
Ll orbitals which transform in the same manner as 1s
- L orbitals and which interact in such a way that the
- 2 ohd energy of interaction is some uniformly decreasing
w5 ..§ 3 §~ function of the separation. For instance, a set of sp*
=S w8 le? hybrids directed radially i or out at polyhedral vertices
<= sufficiently removed from each other (as in any actual
",’\j_” molecular configuration) will give a set of levels in the
R ".:; I same order as they are listed in Table IIL
- JTT" IV. POLYHEDRA OF BORON OR CARBON ATOMS
el 22 7:‘1 For polyhedra of boron or carbon atoms an LCAO-
T= MO calculation proceeds as in (5) and (6) except that
sd o4& a; now each atom contributes four orbitals; one 25 and

the first-order splitting introduced by the crystal field.
Finally we choose from the infinite set of CF-MO’s,
the NV lowest energy orbitals that yield the same

T three 2p. Usually the assumptions are made that
¥ Bre=K S,; and that a(2s) =a(2p)." The representations
generated by the 4N orbitals for the tetrahedron,
octahedron, cube, cube-octahedron, and icosahedron
are given in Table IV. The high symmetry of these
configurations allows reduction of the secular equation
to at most a cubic or quartic equation. The ordering of
the LCAO-MO energies determined under these

Now since the boron or carbon polyhedra are not
generally stable in themselves, it is necessary to
consider how the LCAO-MO’s enter into bonding.
When the solutions to the secular equations are
examined, a set of orbitals is found with energies near
the nonbonding level, with charge concentrated in the
radial direction owt from the polyhedron center, and

TaBLE IV. Representations generated by a 25 and three 2 £ orbitals.

2Axg+2Eg+Fly+3F1u+F20+F2u
cube 2Alq+2A2u+Eu+Eu+Fla+3Flu+ F2u+3F2a

2Au+3 F1u+ F10+2F2u+Gy+Gu+3[1y+}]u

=
o
3 R0
I, . .2
) O &
+ g8
3 o e
L5 8T%
g =g -
K, i He g
t g i €78 . assumptions is given in Table V.
8§ kil g4<a
& T E;D_Ef. SI% .
o C:.? R -H‘::H,'HT;
+ LS S e
Lt = -S4
oz 4+ “W',;lﬂ:
b = & g8
S E R
T RE) ET:is
TN N pidd g
3 ELo9E
- Q=
= 858 o8
= = s 558
EE % 4737
g R
& T £ 3 Ug.;?_:’ig tetrahedron 24,+E+F1+3F,
< = e -V
E Qo .o § :‘:’QE H# 5  octahedron
SS8 ¢ 8 (28808
-NEER BETZIE
= =] E : -9 @8R,
=w = £3Ll8%f< cubeoctahedron 2410+ As+ Aru+3 Byt By 2F,+4F 4
Sg g3
« e - = 35131&5 3Fz,+3qu
= O 8 SCF S
T a6 R :
g~§ 555 g icosahedron
EE 252
TEREF
N+ o o £ 52457
e S W 5“:?555 L H. C. Longuet Higgins a

nd M. deV. Roberts, Proc. Roy.
Soc. (London) A224, 336 (1954); A230, 110 (1955).
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TasLE V. Comparison of CF* and LCAO levels for polyhedra of boron or carbon.

Polyhedron Bracketed (1s) (2p) (253d) (3p4f) (4d5g) (5f6k) (6273)
tetrahedron CF (a1) (f2) (arfee) (f211)
B—B 1.70 A® LCAOC afraiefsfifs
octahedron CF (010) (f1u) (@1p8af20) (Frufaufi) (€5%10)
B—B 1.73 A LCAO  ayfuufrsaefiufiufiofiuts
cube CF (81¢) (f1u) (@rgfaceq) (Frugeufoufin) (Frofiofor) (R240€s)
B—B 170 A LCAO  aigftusdigfafaufiveufagficeufiufosta.
cube—octahedron CF (010) (f1u) (A10feets) (Frutaufeufin) (Frs@afiofases) (Fautfiueufon) (2fio)
B—B 1.75A LCAO  aufrueefuandififinfaufofisefaneutsficfofiufrues
icosahedron Cr (ag) (f1u) (Auhty) (Frufougu) (Bogohy) (fouhruha) (fip)
B—B 173 A LCAO eifivacgufifeuli gehufigfrubtofon

 Order of energy levels within groups which are degenerate under the spherical potential is given, when determined, with energy increasing to the right.

b Distance used for LCAO calculation.

® Noded CF orbital with unnoded orbital of same symmetry, the latter better resembling LCAO level.

with correct symmetry for an outpointing set (i.e., the
same as that given in Table IIT for a set of s orbitals).
These out orbitals are then taken as interacting with
the ligand orbitals to form bonding and antibonding
pairs. The boron (or carbon) polyhedra donate one
electron to each bonding orbital as do the ligands.
These orbitals are thus removed from consideration
when closed shell properties or transitions are de-
termined. The owt orbitals are shown in Table V in
boldface.

To approximate boron or carbon atom polyhedra by
the crystal field model, we choose from the spherical
crystal field ordering (4) the nodeless and the singly
noded orbitals, here introduced by the 2p radial atomic

LOWER ENERGY HIGHER ENERGY

o)
o

LCAQ
a{2s) = al2p)

& ¢

IR OB
CF oo [D i O

5| &

© S

LCAO
al2si Kalzp @ @

Fic. 2. Sketch of possible ont orbitals for LCAO model and CF
model for the octahedron.

orbitals. Thus the zeroth-order crystal field orbitals are
152p(2s83d) (3p4f) (4dSg) (5£6k) (6871), -+, (8)

where the singly noded functions are in boldface. Again
using the reduction properties of Table II, we can
determine the first-order splitting introduced by the
crystal field. From the infinite set of CF-MO’s we
choose the 4V orbitals lowest in energy that yield the
same representations as the LCAO-MO’s, Table V
gives the CF-MO ordering of energy levels. Agreement
with the LCAO scheme is seen to be generally rather
good, but discrepancies occur,

One final step is necegsary before the CF-MO’s for
boron or carbon polyhedra can be used for predicting
molecular properties: the set of outpointing orbitals
that enter in bonding must be identified. We shall
choose these as the IV lowest energy orbitals with the
proper symmetry from the set of singly noded orbitals.
This choice is indicated by boldface in Table V. Agree-
ment between this set and that found by the LCAO

LOWER ENERGY

N
. ,X., QP

8y faq

HIGHER ENERGY

Fi1c. 3. Sketch of singly noded CF d orbitals in octahedron and
the corresponding LCAO orbitals.
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Tasre VI. LCAO levels for a(2s) = —25.1 ev, a(2p) = —8.63 ev,
K ev.

o

cube alnfluqueﬂalaa2uf2uf1 uf2af1 uflveufiaazu

octahedron @15 f12€0810 foo 1 fou fro f1uey

method always fails for one CF-MO, indicated in the
table by an asterisk. For asterisked orbitals identified
as owt there is always an unnoded orbital of the same
symmetry at lower energy that more closely identifies
with the ou! orbitals of the LCAO scheme.

An investigation of the discrepancies between the
LCAO and CF out orbitals is very instructive. In Fig.
2 we show one member of the two ¢, orbital pairs on
which there is disagreement. In the LCAO-MO scheme
the outpointing ¢, orbital has lower energy due to less
negative overlap. In the CF model the orbital with
more nodes is taken as owf. However, the LCAO
identification can be reversed if we no longer set
@(25) =a(2p), but instead set a(2s)<Ka(2p). The
lower energy orbital thus becomes nearly pure 2s in
character as shown in Fig, 3 and ouf character must be
attributed to the higher energy orbital in agreement
with the CF assignment.

Certain other discrepancies between the CF and
LCAO order occur in Table V. A common discrepancy
is well illustrated in the octahedron where the CF 4
orbitals split with ¢, at lower energy than f5,, while the
corresponding LCAQ-MQ’s are in reverse order. The
orbitals are illustrated in Fig. 3, and the reason for the
discrepancy is apparent. The LCAO model makes e,
higher because of negative overlap, while the CF model
puts it lower as it is centered at the positive nuclei.
Again, it can be seen from Fig. 4 the LCAO scheme
can be made to correspond to the CF scheme if we
make a(2s) Ka(2p). In Table VI we give the energy-
level order obtained from an LCAO-MO calculation
for the cube and the octahedron with a(2p)=—8.3 ev
and «(2s) =—25.1 ev. (These are the first and second
atomic ionization potentials of B.) The disagreement
between the order of ¢, and f5, is removed.

Both discrepancies between the LCAO and CF
energy levels discussed above tend to be removed by
setting «(25)<Ka(2p) in the LCAO calculations.
Theoretically the assumption of equality cannot be
justified and if applied to B, leads to very incorrect
results.”? Although detailed calculations in several
polyhedra have shown that energy levels are not overly
sensitive to this assumption,® the comparison with the
CF model in Fig. 3 shows that the LCAO results with
a(2s) =a(2p) are not physically reasonable, and it
seems best to us that the assumplion of equality not be used,

2 M. Gouterman and S. Senturia (unpublished).
B R. Hoffmann (to be published).
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DISCUSSION

Several points should be stressed about the crystal-
field model developed in this paper.

(a) The theory requires only one parameter Z.

(b) The levels converge in a reasonable Rydberg
series to the continuum.

(c) The correspondences between the CF levels and
the LCAO levels give a good insight into the reason for
the ordering of the latter. For example, many calcula-
tions yield a series of lowest orbitals corresponding to
s, 2p, (2s3d), the first levels of the spherically
symmetric crystal-field term.

(d) Many discrepancies between the CF and LCAO
models can be traced back to the LCAO assumption
that «(25)=a(2p). The discrepancies tend to be
reduced when «(2s) is made more negative. In the
case of the splitting of d orbitals, the CF results show
that it is indeed better to make a(2s) lower; however,
in the identification of ot orbitals the CF model may
overemphasize this feature, -

We would like to thank Professor W, N, Lipscomb
for many valuable discussions, and the Shell Foundation
for a fellowship to one of us (R. H.). '

APPENDIX I: ORDERS OF MAGNITUDE

Figure 1 shows the spherical potential for a figure
with NVZ=2 and R=2.5 a.u. This corresponds to an
octahedron with a side of 1.85 A. For a boron octa-
hedron the (2s, 3d) spherical potential levels will be
the top filled. It may be seen from Fig. 1 that this level
has an ionization potential of 0.26 a.u.~7 ev, which is
a reasonable value. We can conclude that effective
charges will be on the order of magnitude of 0.3.

We may next inquire whether such an effective
charge produces a crystal-field splitting small compared

Sq515d5p5s

4taddpas

3d3p3s 3p

2p2s

Hydrogenic  Wannisr poteatial
m smait R

Wanaier potential  Spharieal
t large R boz & coulgmb

pertusbation

$pharical
bea

H atom in largs bex N atom in smatl box

F1G. 4. “Correlation” diagram for various spherical potentials.
The energy levels of a hydrogen atom in a box have been com-
p(nll;zcél)by 3. R. DeGroot and C. A. Ten Seldam, Physica 12, 669
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to the zeroth-order spacings of the spherical potential.
Evaluation of this splitting would require knowledge
of the radial wave functions. However, suppose we use
as a crude wave functions the solutions to a spherical
box, which are well-known Bessel functions. The
octahedral splitting turns out to be 1.26 Z/ P, where P
is the size of the box.* From the rate of falloff of the
Coulomb potential in Fig, 1, a reasonable size of the
box for the d orbital would seem to be 8 a.u. Taking
Z=03 we have a crystal field splitting of roughly
0.05 a.u.~1.3 ev. The separation to the next spherical
potential level is about 0.07 a.u.~1.9 ev. Thus the
crystal-field splitting may just about cause levels from
distinct spherical potential shells to overlap, and an
exact quantitative use of the model would have to be
carried out very carefully. It may be that rather than
such a refinement of the model with effective Z, a full
SCF calculation with the atomic Z and including
electron interaction could be carried out using some
convenient basis set of radial orbitals.

APPENDIX II. OTHER FREE ELECTRON MODELS

1. Spherical Box

The potential well of Fig. 1 may be approximated by
a spherical box. The solutions to the radial equation
are the spherical Bessel functions j;(kr)® and the eigen-
values may be obtained from requiring these to vanish
at some radius P> R, which then becomes another
parameter of the theory. The spherical energy level
ordering engendered by this potential is

152p3d254f3 p5gdd6h3s5fTi, « -

This magic scheme does not differ greatly from that
discussed in detail in our paper. It has the advantage
of well-known analytic wave functions, for which all
radial integrals may be done with relative ease. The
predictions do not match the LCAO-MO levels quite
as well, even when a perturbation of the form — (C/r)
is added in an attempt to account for the non-Coulombic
features of the box walls. The “correlation” diagram of

14 R. Hoffman (unpublished results).
18 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
{McGraw-Hill Book Company, Inc., New York, 1953).
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Fig. 4 (no real correlation can be made along the entire
horizontal axis) summarizes the various spherical
schemes.

We could also use spherical box wave functions, but
require that d/dr(r’j?)=0 at r=R, ie., that the
electron density be a maximum at the position of the
nuclei. This gives again almost the same shell structure
as the box model, but with levels further apart. Since
a box normalization would have to be used, the
simplicity of the wave functions is lost.

The spherical box does not, of course, yield the con-
vergence to a continuum and Rydberg series of the
Wannier potential.

2. Perimeter Model

A three dimensional spherical rotator gives the level
order '
spdfgh -

with eigenvalues proportional to /(/41). The scheme
is good for hydrogen atoms, but fails for other molecules.

3. Shell Model

Here we have a spherical shell instead of a box. The
analysis is more complicated but the general result is
that as the shell is made thinner, the levels with one or
more radial nodes are pushed up very quickly. To
preserve the 25 level in about the same position it
occupies in the spherical box would require a ratio of
outer to inner radius large enough so that the fixing
of a node at the inner shell would be artificial.

4. Cubical Box

It is interesting to compare the energy levels of an
electron in a cubical box with those of a spherical
potential plus a cubical crystal-field perturbation.The
cubical box levels are given by Pauling and Wilson'
and they do not match the LCAO-MO levels for a cube
very well. No doubly degenerate e levels arise and the
box gives degeneracies higher than those actually
present,

L. Pauling and E. B. Wilson, I'ntreduction to Quantum Me-

chanics (McGraw-Hill Book Company, Inc.,, New York, 1935)
p. 9.



