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Can a hydrocarbon with a 5-center 4-electron bonding array
exist? Acyclic electron-deficient bonding arrays of the 3-center
2-electron C- - -H- - -C variety are well-precedented in hydrocarbon
chemistry,1 but whetherσ-delocalization can be extended over larger
arrays is not yet known.

Linear 5-center 4-electron C- - -H- - -C- - -H- - -C bonding arrays
can be described as hybrids of classical resonance structures, such
as those shown in1, which delocalize positive charge throughout
the array. The molecular orbital description of these structures (using
a simple basis set that consists of a p-orbital on each carbon and
an s-orbital on each hydrogen) is shown in2. All four electrons
reside in bonding orbitals, but whether delocalization prevails will
depend on how favorable localized alternatives are.

Initially we surveyed (via calculations at the B3LYP/6-31G(d)
level2) a number of potential support structures based on helical
backbones, as shown in3. These were inspired by our previous
investigations on helical sigmatropic shiftamersssystems with
exceptionally expressed delocalization in their transition structures.3

In short, we were unable, unfortunately, to locate minima for any
of these systems which contained the desired delocalized 5-center
array.

Additional frameworks (for example,4 and 5)sinspired by
structures that had previously been shown to support acyclic
3-center 2-electron arrays (6 and7)1swere also explored. Again,
no minima with truly delocalized 5-center C- - -H- - -C- - -H- - -C
arrays were found. Structure4 relaxed to a localized structure with
a central secondary cation and two 1.1 Å C-H bonds pointing
toward it, but with their hydrogens 2.1 Å away from the cationic
center. Structure5 relaxed to an interesting asymmetric structure

with four different C-H distances in the C- - -H- - -C- - -H- - -C
array (1.2, 1.5, 2.3, and 1.1 Å, in that order), resembling a 3-center
2-electron array aligned with a localized C-H bond.

Hoping that stricter geometric constraints might encourage
formation of a symmetrical, delocalized array, we explored relatives
of 5 with rigid, unsaturated bridges. Gratifyingly, cation8 (Figure
1), derived from three anthracenes “joined up” around a C- - -H- - -
C- - -H- - -C core,4 turned out to possess a 5-center 4-electron array
with four short C- - -H distances (the geometrical features of this
core are highlighted in8′, Figure 1). This remarkable structure
contains two approximately trigonal pyramidal carbons and one
five-coordinate trigonal bipyramidal carbon!5 Although isomers with
one or two localized C-H bonds pointing “out” from the termini
instead of “in” toward the central carbon are thermodynamically
more stable (by∼20 and∼30 kcal/mol, respectively), we believe
that cation8 may still display some measure of kinetic stability;
note that the ends of the 5-center array are sterically shielded, by
C-H bonds of the anthracenes, from external attack.

1H and 13C NMR chemical shifts were also computed as a
measure of the electron density around the atoms in the delocalized
array of8 (Figure 1).6 Experimentally determined chemical shifts
were used previously in characterizing the structures of delocalized
cations such as6 and7;1 in general, experimental shifts for bridging
H’s range from-7 to-3 ppm (shifts computed with B3LYP range
from -7 to -4), and shifts for the carbons that flank them range
from +135 to +180 ppm (computed shifts range from+150 to
+200).1 The computed chemical shifts for the hydrogens (+2.9
ppm) and the carbons (+112 and+182 ppm) of the 5-center array
in cation8 differ considerably, however, from those found in typical
3-center 2-electron systems. Nonetheless, we believe that these
chemical shifts are still indicative of delocalization.

To probe this issue further, cation8 was dissected into three
pieces: two identical triphenylmethanes, each with the same
geometry as the ends of8 (9, Figure 2) and a trityl cation with the
geometry of the central portion of8 (10, Figure 2). Chemical shifts
were computed for9 and 10, without allowing any geometric
relaxation to occur.6 Clearly, the shifts in9 and10are quite different
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from those in8, indicating that there is substantial interaction
between all five atoms of the electron-deficient array of8.
Comparison of the shifts in8, 9, and10 indicates that the terminal
carbons in8 are in fact deshielded upon interaction with the central
carbon, while this carbon is greatly shielded7sexactly what one
would expect for a strong interaction of the type shown in1 and2.

One additional feature of8 warrants discussion: the fact that
the terminal C- - -H distances in the 5-center array are 0.2 Å shorter
than the central C- - -H distances. This variation in C- - -H distance
is actually nicely accounted for by the simple orbital picture shown
in 2. The electron distribution in the two occupied MOs makes for
stronger terminal bonds, much as one would have in a pentadienyl
cation. In accord with this, an extended Hu¨ckel calculation on a
hypothetical geometry with fourequal C-H distances gave
substantially larger overlap populations for the terminal C-H units.8

In conclusion, we have described a structure, cation8, that we
predict will possess a delocalized 5-center 4-electron bonding array.
We think this structure could be made.
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Figure 1. Optimized structure of 5-center 4-electron cation8, (with its
core highlighted in8′). Selected distances (Å), angles (deg), and computed
chemical shifts (ppm relative to TMS, italics) are shown.

Figure 2. Computed chemical shifts (ppm relative to TMS) for structures
derived from portions of8.
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