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Theory of Polyhedral Molecules. I. Physical Factorizations of the Secular Equation

Roarp HorrmManN aANp WirriaM N. LipscoMs
Depariment of Chemisiry, Harvard University, Cambridge 38, Massachusetis
(Received November 21, 1961)

An LCAO-MO systematization of polyhedral molecules such as ByHy is undertaken. Peculiarities of
polyhedral systems, such as inapplicability of nearest-neighbor assumption and increased number of param-
eters are discussed within the framework of a Hiickel type of theory. It is found that inclusion of hydrogen
atoms does not affect predictions of closed shells, but is important in determining electronic transitions.
Various physical factorizations of the secular equations, such as the in-surface, apex-equatorial, and ring-
polar separations are critically examined. A computer program for caleulations on molecules of up to 15
atoms is described and used to obtain the energy levels of a variety of polyhedral molecules.

INTRODUCTION

OLYHEDRAL molecules and ions represent a
class of molecular and ionic species for which argu-
ments based upon symmetry considerations may be
expected to yield interesting results. Degeneracies in
the one-electron approximation to molecular orbital
descriptions often give rise to relatively large gaps in
the energy level scheme, and hence relatively complex
molecules may be described with some greater degree
of success than is possible in molecules of lower sym-
metry. Such polyhedral species are prominent in boron
chemistryl*s (B4C14, BsCls, BmHm_Q, Blng-f'g) and in
intermetallic complexes and crystals. Saturated analogs
are expected in carbon chemistry (tetrahedrane C,H,,
cubane CgHs, dodecahedrane CyHsg, etc.) and some
arise in carbon-boron chemistry (the carboranes).
Inorganic molecules may also form compact polyhedral
structures (Pi, Asy, etc.). Some of the polyhedra dis-
cussed in this paper are shown in Figs. 1-3.
Molecular orbital descriptions have been given to
the known B,Cly, BsCls, BygHio~%, Bi.His™? species,?+6
1W. N. Lipscomb, “Recent studies of the boron hydrides,”
in Advances in Inorganic Chemistry and Radiochemistry (Aca-
demic Press Inc., New York, 1959), Vol. I, p. 117,

*W. N. Lipscomb, A. R. Pitochelli, and M. F. Hawthorne, J.
Am, Chem. Soc. 81, 5833 (1959).

? A. R. Pitochelli and M. F. Hawthorne, J. Am. Chem, Soc. 82,
3288 (1960); J. A. Wunderlich and W. N. Lipscomb, bid. 82,
4427 (1960).

*W. H. Eberhardt, B. C. Crawford, and W. N. Lipscomb, J.
Chem. Phys. 22, 989 (1954).

5 R. A. Jacobson and W. N. Lipscomb (unpublished).

¢ H. C. Longuet-Higgins and M. de V. Roberts, Proc. Roy.
Soc. (London) A230, 110 (1955).

and to”® BsH;™?, BgHy~* and other species, in varying
degrees of approximation. Our purpose here is to explore
the nature of some of these approximate theories. In
the first paper we investigate approximations, made
for convenience in handling the secular determinants
arising from linear combinations of molecular orbitals
(LCAO). In the second paper, a crystal-field model is
compared with the LCAO calculations, with, sur-
prisingly, a resultant improvement in the assumptions
of both types of orbital descriptions. In the third paper
we give atomic charges, bond orders, and reactivity
parameters for some carboranes. In the fourth contribu-
tion we present the results of a systematic survey of
energy levels for a much larger variety of polyhedral
species than has heretofore been investigated, having
been encouraged by recent experimental developments
along these lines in boron and carbon chemistry.

LCAQO-MO EQUATIONS

If we consider a molecular orbital ¢ built up as a
linear combination of atomic orbitals ¢,

= ZC#’:‘, (1)
we obtain the following set of equations for the expan-

"E. B. Moore, Jr., L. L. Lohr, Jr.,, and W. N. Lipscomb, ]J.
Chem. Phys. 35, 1329 (1961).

8H. C. Longuet-Higgins and M. de V. Roberts, Proc. Roy.
Soc. (London) A224, 336 (1954).
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F16. 1. a. tetrahedron, b. cube, c. octahedron, d. icosahedron,
e. dodecahedron, f. archimedean antiprism. @, b, and ¢ are CxHxy
possibilities.

sion coefficients:
(ar—' ESrr) Cr+ LI(BN_ ES"-B)C-’= 0

7=1, 2y 3, "':My (2)
where M = number of orbitals considered

E= energy

Sn= / ¢ *pdr = overlap
o= / ¢.*Hedr= “Coulomb integral”

Bra= f ¢, *Hp,dr= ‘‘resonance integral.”

H is the ubiquitous Hiickel Hamiltonian, whose explicit
form is hardly ever specified in the semiempirical
theory. In the following, we will concern ourselves with
polyhedral molecules of the formula ByXy, where B

a

Fi6. 2. a. trigonal prism, b. bicapped trigonal prism, c. pen-
tagonal prism, d. bicapped pentagonal prism, e. bicapped cube, f.
bicapped archimedean antiprism. g, ¢ are CyH y possibilities.

may be boron (or carbon) and X may be hydrogen or
chlorine.

The simplest Hiickel type of treatment of these
molecules differs considerably from the corresponding
calculations on aromatic systems. The polyhedral
frameworks are inherently three dimensional. No
symmetry factorization of the s-m type is possible,
though various other physical factorizations will be
discussed below, Thus the number of orbitals considered
is greater for polyhedral molecules. In general, we are
forced to examine the interaction of 4 orbitals on each
boron (one 2s and three 2p) with one orbital on each
hydrogen. The secular equation is thus of degree 5N.
If we factor out the B—H bonds, we are still left with
a diagonalization of a 3.V by 3V matrix.

Moreover, as we will show in the next section, the
equally ubiquitous tight binding assumption of aro-
matic theory, i.e., the neglect of all but nearest-neigh-

AN T £

e f

F1G. 3. a. cube-octahedron, b. trigonal bipyramid, ¢c. pentagonal
bipyramid, d. rhombic hexahedron=bicapped trigonal antiprism,
e. truncated tetrahedron, f. rhombic dodecahedron=omnicapped
cube. e is a CyH y possibility.

bor interactions in the Hamiltonian matrix, is inap-
plicable to boron polyhedra. All interactions must be
evaluated.

Still another difference is that, whereas there is only
one Coulomb integral in the w-electron theory of
homonuclear aromatics, for polyhedral molecules we
are obliged to consider in the homonuclear case a 2s
and a 2p Coulomb integral. In most previous treatments
these have been set equal, an assumption which is not
justifiable, but which reduces the number of parameters
and therefore is habit forming. Arguments for setting
a(2s) and a(2p) unequal will be presented in subse-
quent communications.® Since our main purpose in
this paper is to examine critically various physical
factorizations of the secular equation, we shall retain
here the assumption of equal Coulomb integrals, in
order to facilitate intercomparison of our results with
those already in the literature. We shall also use a

? R. Hoffmann and M. P. Gouterman 36, 2189 (1962) following
paper; R, Hoffmann and W. N, Lipscomb (to be published).
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Slater orbital basis (exponent 1.30 for B), though in a
subsequent section we examine the consequences of
using a different orbital basis. If the resonance integral
is taken to be proportional to the overlap (perhaps a
better assumption would be to take a different propor-
tionality constant for each overlap type)

Bre=KS (3)

the set of equations reduces to
"“xCr+ E,Srscazo (4)
—x=(a—E)/(K—-E), (3)

where we have chosen S,=1, a(2s5)=ca(2p). The
energy parameters are the eigenvalues of the off-
diagonal overlap matrix S—1, and must all be greater
than —1, From (5) we obtain

E,‘= (a-f—Kx,—)/(l—{—xi), (6)

E—E;=(xi—x;)(K—a)/(1+x) (14x). (7)

Thus the order of energy levels is preserved for all K
and « (K must be taken greater than ) and we may
work directly with the energy parameters x; thus post-
poning a choice of K and a. The method outlined above
was first introduced for boron polyhedra by Longuet-
Higgins and Roberts.5:?

NEAREST-NEIGHBOR ASSUMPTION FOR BORON
POLYHEDRA

and

Neglect of all but nearest-neighbor interactions in
the Hamiltonian matrix is an idée fixe of the LCAO-
MO Hiickel method for aromatics. It is perhaps not
widely recognized that its feasibility is merely due to
the relatively small magnitude of the p—p = overlap
for two carbons a reasonable distance apart. As has
been pointed out by Ruedenberg,” the tight binding
approximation would fail, if this overlap, which we will
call §, would exceed 1. Consider a basis set of nor-
malized atomic orbitals

¢={¢17 ¢i" °“7¢N}' (8)

The overlap matrix S may be expressed as the Hilbert
space inner product ¢+¢. From this it follows that §
is positive definite and therefore its eigenvalues are all
greater than zero. Now we inquire about the eigenvalues
of §’, a modification of 8 in which some of the off-
diagonal elements of S have been set equal to zero.
Using Hadamard’s theorem," we find that the eigen-

values of 8’ are bounded as follows:
—(M-1) <M1, (9

(10)

where
M= max{> | Sk/|}.
l

WK, Ruedenberg, J. Chem. Phys. 34, 1884 (1961).
1t See M. Parodi, La Localisation des Valeurs Characteristiques
des Mulrices (Gauthier-Villars, Paris, 1959), Chap. 2.
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Thus if M>1 some of the eigenvalues of S’ may be
negative or zero; this in turn would imply linear de-
pendence of the basis set and would lead to an incorrect
energy level scheme. To ensure consistency in the
theory we must have M <1. The maximum number of
nearest neighbors in aromatics is 3, which leads to
Ruedenberg’s criterion that S must be less than 3.
Since §~0.25, this is satisfied. When we turn to boron
polyhedra, the maximum number of nearest neighbors
is 4 or 5, moreover there is more than one orbital on
each center. Even if we were to consider only one non-
vanishing interaction with each center, we would still
have to require that S be <%, %, respectively, whereas
S actually is over 0.30. Indeed, calculations with a
nearest neighbor assumption for the octahedron and
cube lead to negative eigenvalues of the overlap matrix
and confirm the theoretical conclusion that for B
polyhedra the assumption of only nearest-neighbor inler-
actions leads lo inconsislencies: all inleractions in the
polyhedron must be accounted for.

COMPUTATION

A program for LCAO-MO calculations on polyhedral
molecules has been written for the IBM 7090 computer.
The overlap matrix for a single s and three p orbitals
on each of up to 13 arbitrarily situated atoms is set up.
Since the p orbitals transform as vectors, the coeffi-
cients (each to be multiplied by the proper overlap)
of the various interactions between orbitals on the
atoms i and j may be written down as:

Clsiy 55) =1,
C(si, piso)=—R; Py,
C(pi ps; 0) =— (Riy»P) (Riy Py),
C(pi, pj; m) = [P,‘— (Rij+Py) Rii]' [P,—(RyP)Ry/]
=P P,—(Ry-P) (Ri;-P)),

P;=i, j, k Cartesian unit vectors,

(11)

where R;; is the unit vector along the interatomic
distance. All interactions are considered, and the full
eigenvalue problem (H—ES8)C=0 is solved, subject
to the assumption that 8,,=K S, for atomic orbitals.
The input parameters are:

(1) Coordinates of the atoms.

(2) § and p Coulomb integrals. Provision is made
for putting a different s and p Coulomb integral at
each center.

(3) The parameter K.

(4) An overlap scheme. This may be a subroutine
which uses Slater 2s and 2p overlaps, as was done
throughout the calculations in this paper; or SCF
overlaps may be read in.

The eigenvalue problem is set up in an AO basis and
the energies and molecular orbitals obtained by a
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TaBLE L. Representations of molecular orbitals for some polyhedra.

N Symmetry Geometry Representations
4N 2a1+¢+4-3
4 Ta tetrahedron ' b
out atf2
4aN 201542, 3f 1+ i+ -
6 O octahedron v ekttt
out apteptfiu .
4N 201g+202u+¢u+¢n+fla+3f2u+f2u+3flu
8 On cube
out Gyt 1utfort a2y
4N 2a1,+azt aau+3e0+eut 21+ 300+ 3fout 41w
12 Oh cube-octahedron b ’ it Ut it
out e tfiutegtfoy+fou
) 4N 24,+3f1u+f10+2f2u+8a+gu+3hn+hu
12 In icosahedron
out aotfiut by
. 4N 501+az+b;+5b2+5£1+4¢z+563
10 Dig bicapped archimedean antiprism
out 2(11+2b2+61+€z+83

method suggested by del Re,® which requires only a
single matrix diagonalization. When B,,5K S, the
problem is solved by a modification of Lowdin’s
method,'® requiring two matrix diagonalizations. The
main time-consuming step in the calculation is the
matrix diagonalization, which is carried out by Jacobi’s
method of two-dimensional rotations. There is provision
in the program for a g—u factorization when a center
of symmetry is present, but otherwise no simplifica-
tions associated with molecular symmetry are intro-
duced. It was found to be more time consuming for a
computer to learn group theory than do the brute force
matrix diagonalization. Approximate computation
times for the solution of the 4V problem without a
center of symmetry are 10 sec for 4 atoms, 50 sec for
8 atoms, 150 sec for 12 atoms.

To study the various physical factorizations, several
subroutines are used. First 54* hybrids are formed at
each center, with one directed axially out of the poly-
hedron center. To examine the in-surface separation,
the 3.V remaining orbitals are rehybridized to give an
axial set of .V, primarily s, and pointing i, and a set
of 2V p orbitals perpendicular to the axial direction,
i.e., a surface set. The final matrix has the form shown
below.

out I

in II

I A surface
11

12 G. del Re, Quantum Chemistry Group, Uppsala, Tech, Note,
October 20, 1958.
1 P-0. Lowdin, J. Chem, Phys. 18, 365 (1950).

To test the owut-in-surface separation we first solve the
4N problem, then neglect the matrix elements in
region I and solve the 3.V secular equation. F inally we
drop the matrix elements in region II and solve the
separate iz (.V) and surface (2V) problems.

To examine the apex-equatorial factorization, we
rotate the 3(.V—2) orbitals of the equatorial atom set
so that one orbital at each equatorial center is directed
toward its apex atom. The secular equations for the
equatorial set of 2(V~2) orbitals and for the single
apical set of $(V—2)+3 orbitals are solved separately.

To examine the polar-ring factorization, sp? hybrids
are formed for the ring atoms, with one pointing out.
For the pyramidal molecules these outpointing orbitals
are chosen arbitrarily in the plane of the polyhedron
base (whereas otherwise they were chosen pointing
out from the polyhedron center). The secular equation
for the polar set of p, ring, and apex orbitals is solved
separately from that for the ring set.

Finally, provision is also made for doing the 5N
problem, i.e., including a set of V hydrogen atoms.

B—H BONDS AND OUT-POINTING ORBITALS

The most complete version of the Hiickel-type
LCAO-MO calculation of the energy levels of a mole-
cule ByHy yields an eigenvalue problem of degree 5.
There are three Coulomb integrals: «(2sB), «(2pB),
a(1sH), and 6 types of resonance integrals: 8(1sH,2sB),
B(1sH, 2pB, ¢), 8(2sB, 2sB), B(2sB, 2pB, o), B(2pB,
2pB, ¢)B(2pB, 2pB, =) to consider. In the polyhedra
of higher symmetry considerable simplification of the
eigenvalue problem may be obtained by group-theo-
retical methods. Thus for octahedral BeHs, the MO’s
subduce the following representations of the molecu-
T’I‘h-e—g;p-theoretical notation used is that of E. B. Wilson,

Jr., J. C. Decius, and P. C. Cross, Molectdar Vibrations (McGraw-
Hill Book Company, Inc., New York, 1955).
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TasLE IL. Energy parameters.
5N 4N 3N SN 4N 3N
(a) tetrahedron (7,), B—B 1.70 A, B—H 1.21 A Jiu 8331 S 1.003
L —0.854 fr  —0.853 fo  —0.849 f:: oﬁ‘;04 ra };232
fe —0.792 h —0.556 N —~0.556 dou 0.881 A 3.732
a -0.768 i —0.093 e 0.033 % 1.240 e
h —0.556 & 0.033 fr 0.685 fa0 1.326
¢ 0.033 o 0.038 & 2.094 o 1,404
f 0.402 fe 0.748 fiu 2.156
}11 (1)(7)3.3 [ 2.159 a1 3.889
2 . 7
4 2.282 (e) Icosahedron, Iy, B—B 1.73 A, B—H 1.20 A
(b) Octahedron (Os), B—B 1.73 A, B—H 1.20 A fru —0.887 feu —0.886b fru —0.886
e —0.888 ¢ —0.887 ¢, —0.884 & 08B ko —0.862 A —0.856
fou —0.844 Sta  —0.831 fra —0.829 Jm 0.2 fiu =082 S —0.782
e —0.803 he  —0.671 fo  —0.671 Jou o4z o SEu v 0003
fiu —0.776 w  —0.416 e —0.416 v 0.7 “ : u :
&y —0.753 fu —0.144 o 0.493 fu =018 g 0471 & —0.471
S —0,671 e —0.089 Jiu 1.023 fﬂ Z 0690 o o2 iu 0084
e —0.416 @ 0.204 g 2.969 B Zoens 2 : v o0t
T 0.337 A 0.493 u : S 0.150 S 1.
I 0.493 T 1.130 g =000 8u Q.01 L 4.163
b : . a, 0
ffx 0-gog @y 3.066 T 0.460 o 1,107
5 3 24 0.518 fra 1.990
s 3°210 fiu 0.619 a5 4.203
Yo : ke 1.358
_B1L _H1 a 1.485
(c) Cube (Ox), B—B 1.70 A, B—H 1.20 A P 188
@, —0.938 o —0.938 o2 -0.932 g 4.469
~0.883 —0.879 -0.87
{12;.. —0.816 ffi —0.729 12: —0.729 (f) D bicapped antiprism, B—B 1.74 A, B—H 1.20 A
fiu  —0.806 6. —0.729 fiu  —0.710 _ _ ' B
h 0,797 fu  —0.637 ha —0.637 2 i @ —0A g 0.8
@y —0.741 e —0.331 Fo 0.064 o Zoaes P Tolsso 5 Zo8s0
u —0.729 az, —0,243 Tai 0.096 b: Z0.862 g‘ 0,853 Z0.812
fi«  —0.684. S —0.028 € 0.893 0852 n o8 b o8
Ju  —0.637 S 0.096 S 1.233 a  —0.851 a  —0.812 6 —0.776
fe  —0.128 Foa 0.288 a1y 3.127 g ; . g 1 .
e —0.807 s —0.754 a  ~0.747
Fru 0.096 a1y 0.341 0 804 0739 0739
a 0.437 p 0.893 g : g~ O o
o 0,418 K R b —0.795 P —0.637 & —0.615
f*" sk s T & —0.786 e —0.601 e —0.598
% ook 19 . . —0.747 b —0.590 B —0.59
€ 1138 a —0.739 e —0.430 e —0.327
]‘,“a 57 b —0.727 B —0.221 & 0.328
1u fa & —0.711 e —0.198 e 0.756
G : a —0.69‘; e —-0. 143 & 0.760
d . —B 1.7 B—H 1.20 A o —0.62 a -0,12 it 1.004
(d) Cube-octahedron (Oy), B 54, - Z0.600 c;l Zol082 ell 1 447
e —0.899 e —0.802 fou  —0.885 b —0.590 Be 0.120 bs 1.978
fre  —0.891 fo  —0.887 e,  —0.883 e —0.363 o 0.379 @ 3.877
fw  —0.835 fiu  —0.788 fo —~0.769 e 0.197 o 0.489
e —0.822 o ~0.774 fe  —0.756 e 0.243 & 0.807
o —0.807 Yo —0.756 @y  —0.739 e 0.364 & 0.901
¢ —0.794 2, —0.739 fia  —0.730 be 0.399 a 1.046
fiu  —0.756 en  —0.660 t.  —0.669 a 0.446 & 1.584
@, —0.739 fru  —0.540 fr«  —0.483 & 0.509 be 2.059
i ~0.733 e —0.269 w  —0.232 ba 0.734 a 3.997
e, —0.724 fiu = —0.232 . 0.361 @ 0.965
fu  —0.677 fo  —0.177 fu 0.872 a 1.095
e.  —0.660 W —0.159 T2 0.881 e 1.180
fra  —0.513 Fiu 0.154 e 0.991 a 1.393
fu = —0.232 Fra 0.385 fra 1.754 P 1.968
e 0.249 a1, 0.549 a1, 3.616 by 2.375
fao 0.260 Ot 0.811 o 4.172

® The energy parameters given here differ slightly from those of Longuet-Higgins and Roberts (reference 8 in text) who performed the calculation for B-B
1.72 A, Slater exponent 1.242. The latter calculations were checked with our program and an error was found in the tu(fia) levels, of which the authors are
aware, The cotrect fi, energy parameters are: —0.864, —0.175, 1.218,

b The energy parameters given here differ from those of Longuet-Higgins and Roberts (reference 6 in text) who performed the calculations for B-B 1.77 A,
Slater exponent 1.271. The latter calculations were checked and found in rough agreement with the results of our program. The source of the small discrepancies
here is not known.
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TasLE II1. Separated in and surface orbitals for some polyhedra.

tetrahedron
surface in
N —0.556 Je —0.698
[ 0.033 a 2.094
/> 0.534
octahedron
surface in
Jie —0.671 € —0.884
Jeu -0.416 Jiu ~0.400
T2 0.493 diy 2.969
fl N 0. 594
cube
surface in
£y —0.729 dgy —0.937
fig —0.637 Jay —0.749
T2 —0.063 Jiu 0.019
fz,‘ 0.096 ayg 3.127
Jfiu 0.494
€ 0.893
cube-octahedron
surface in
T —0.756 Jou —0.848
az —0.739 € -0.730
€y —0.669 Joo —0.514
Jou —0.520 Jiu 0.644
Jie —0.232 g 3.616
Jiu 0.179
flu 0 . 554
a0, 0.617
€ 0.838
doy 0.881
icosahedron
surface in
Ji —0.782 Sou —0.886
' —0.678 hy —0.666
&9 —0.471 Sru 0.609
Zu 0.518 a, 4.163
fiu 0.526
Iig 0.794

lar point group Os:
3Ala+3E0+4F1u+F1u+ F20+F2u-

After group-theoretical reduction; we are left with no
worse than a quartic equation to solve. Still the number
of parameters is too great, and we shall seek a simpler
approach.

The B—H bonds in boron hydrides and hydride ions
have the characteristics of normal covalent single
bonds. The bond distance is fairly constant and does
not seem to depend on the bonding of the B involved,
nor on the degree of electron deficiency in the molecule.
We may consider the B—H bonds formed by an sp®
orbital from the B and the hydrogen orbital consuming
an electron pair, one of which is donated by the B and
the other by the hydrogen atom. Once we make this
step, two approaches are possible.

In the first method,®® which we will call “4/N,” the
H orbitals are dropped, and the eigenvalue problem of
degree 4N, involving only B orbitals, is solved. Upon

R. HOFFMANN AND W.

N, LIPSCOMB

examination of the resulting energy levels, one finds a
set of orbitals near the nonbonding level which (1)
have the correct symmetry for an outpointing set, and
(2) concentrate electronic charge in the direction
radially out from the polyhedron center at each atom,
These “out’” orbitals are then identified as those which
form the B—H bonds. They interact with the set of
H orbitals of the same symmetry to produce a bonding
and an antibonding set. In filling the available electron
slots, each boron and hydrogen is asked to contribute
one electron to the bonding set, which is thus filled by
2N electrons. The remaining framework levels are
populated in the usual fashion.

In the second method,* which we will call “3N,” one
orbital at each boron is prepared for bonding, i.e., we
form an sp® hybrid directed out. We then assume that
the interactions of these outpointing orbitals with the
other framework orbitals are negligible, and then find
by use of the methods given above that the secular
equation becomes one of degree 3N.

Now once we have removed the H orbitals, we have
no a priori rationale for giving preference to either the
3N or the 4N scheme. The 4N approach has the ad-
vantage that one can work with an atomic orbital basis,
whereas for 3N we must treat hybrids. On the other
hand, the size of the matrix to be diagonalized is
smaller for 3N,

If the factorizations we have described are to have
any significance, we must have a reasonable degree of
coincidence between the various calculated energy level
schemes. To examine this point, we have carried out
the 5N, 4N, and 3N calculations for six molecules,
with a(2sB) =a(2pB) =a(1sH). Calculations for un-

equal alphas give different energies, but exhibit the

same kind of behavior regarding the factorizations.
The molecules are the tetrahedron (7), octahedron
(On), cube (On), bicapped archimedean antiprism
(D), cube-octahedron (O,), icosahedron (7). The
symmetries of the 4N MO’s and the outpointing set
are given in Table I. In Tables II(a)-II(f) we give
the calculated 5N, 4N, and 3N energy levels. ~ °

It is seen that the 4V and 3N calculations are quite
good approximations. In all methods, filled electronic
shells are predicted for tetrahedral BJH,* CH,® Py,
octahedral B¢H¢ 2,2 cubical BsHg 2, CgHs, Dy ByoHy 2,2
cubeoctahedral By,H;,2,'® icosahedral By.Hj.~2.% More-
over, in each approximation the order of the significant
bonding levels is preserved, while predicted electronic
excitations vary. Indeed, the situation with respect to
electronic transitions is analogous to that in certain
heteronuclear aromatics, where there may be n—r*
and r—7* transitions. The B—H bond orbitals (whose
energy is clearly defined only by the SN calculation)
are the analogs of the nonbonded orbitals, while the
delocalized framework MO’s are analogous to the

3 W, N. Lipscomb, Tetrahedron Letters 18, 20 (1959).

% W. N. Lipscomb and D. Britton, J. Chem. Phys. 33, 275
(1960).

(NSRBI - SR - B = R IS e Y el

=
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TasLe IV. Energy parameters,

reconstructed reconstructed
4N 3N 3N» equatorial 4N 3N 3N equatorial
(a) Dug rhombic hexahedron, N =8, B—B 1.74 A ez —0.198 ¢ 0.756 e 0.337  apex (Cy)

e —0.887 ¢ —0.887 gz —0.801 a4, —0.801
a, —0.852 g, —0.831 g —0.795 ¢ —0.795
a3, —0.837 ¢, —0.829 @, —0.748 a4y, —0.664
e —0.836 gy —0.762 a —0.748 ¢, —0.618
o, —0.819 @, —0.736 ¢ —0.679 g —0.400
e —0.708 ¢ —0.692 e, —0.679 ¢ 0.287
gy —0.664 a5, —0.664 ay, —0.664 e,  1.004
ew —0.,636 e, —0.59 ew —0.618 gq, 2.118
e —0.443 g, —0.409 a, —0.409

a —0.409 ¢, —0.173 & 0.105  apex (Cu)
ew —0,237 e, 0.114 ¢, 0.103 a —0.748
azs —0.200 e, 0.698 &g 0.287 ¢ —0.679
a; —0.063 qy 0.830 €y 1.004 ¢ 0.105
Qo 0.068 e, 1.090 Gig 1.896 a 1.896

€ 0.133 @ 1.752 a 1.896
ey 0.217 a4, 3.362 ay, 2.118
ayy 0.296
€ 0,740
a,  0.928
ey 1.238
a2y 1901
ala 3451

{(b) D bicapped antiprism B—B 1.74 A

e —0.894 e —0.894 o —0.829 ¢ —0.828
ez —0.862 & —0.8062 b —0.829 b —0.812
a =—-0.859 b —0.850 ez —0.828 e —0.740
b2 —0.833 a —0.812 b —0.812 g, —0.739
by —0.834 b —0.812 ez —0.740 ¢ —0.608
e —0.812 ¢ -=0.776 az —0.739 b 0,59
e =—-0.754¢ ¢ ~0.747 eg —0.676 ¢ —0.034
az —0.739 az —0.739 e —0.666 e 0.680
e —0.637 & —0.615 ez —0.060 e 1.337
e —0.601 e —0.398 a —0.608 a 2.528
b —0.590 b ~—0.590 b —0.590

e —0.430 ¢ ~0.327 ez —0,034

b —0.221 ¢ 0.328 e 0.337

e —0.148 ¢ 0.760 [ 0.680 @ —0.829
o —0.120 g 1.004 ¢ 1,337 & —0.676
a —0.082 ¢ 1.447 a 2.163 ¢ —0.666
b 0.120 5, 1.978 by 2.163 e 0.337
& 0.379 a 3.877 o 2.528 a4 2.163
a, 0489

1) 0.807
€ 0.901
[} 1.046
a 1,584
by 2.059
a1 3.997

(¢) D bicapped pentagonal antiprism (=1, icosahedron),
B—B 1.73 A.

fu —0.886 . fo, —0.886" @, —0.835 ¢, —0.835
hy —0.862 h, —0.856 @, —0.827 ar, —0.810
Ju —=0.827 fi; —0.782 @y —0.827 &, —0.809
ho —0.782 f. —0.773 &, —0.810 g —0.783
by —0.678 hy —0.678 e, ~0.809 e —0.680
g —0.471 g —0.471  a; —0.783 s, —0.67%
hg —0.239 g, 0.518 &, —0.718 e, —0.636
S =0.225 h, 0.984 o, —0.718 & —0.243
Ju 0130 fi,  1.907 ey, —0.689 e 0377
g« 0.318 g,  4.163 g1 —0.678 e  0.057

ay 0.619 e, —0.636 ¢, 1.653
Iy 1.107 . e, —0.613 a, 2.721
Jiu 1.990 22y —0.613

ag 4,293 e, —0.243  apex (Cs)

€2y 0.377 o —0.827
el 0.673 & —0.718
e 0.673 e —0.613
[>7) 0957 é 0.673
- ey 1.653 a, 2.143

o, 2.143
-G 2.143
a1y 2.721

® 4 pex and equatorial levels arranged in order.

b The correlations from I to Ds are: f—azter, hmetetao, fimarte, goater, a—an

aromatic = orbitals. To preserve the analogy, we denote
framework orbitals by f, f* and the B—H bond orbitals
by &, b* Thus the first excitation in B.H,, BeHg2,
CsHs, Ox, and I, BpHy™2 is predicted as b—f*, in
BiHy™ 6—b*. If the b—f* transition is symmetry
allowed, it is nevertheless expected to be of low inten-
sity since the spatial overlap of the b and /* wavefunc-
tions is small. Thus the spectra of these polyhedral
molecules should be characterized by several weak
absorptions in the near uv(b—f*) followed by a strong
absorption ( f—f*) at higher energies. Dr. A. Kacz-
marczyk of this laboratory has kindly communicated
to us' preliminary, low-resolution uv spectral data on
Byu:Hy*(14), BoHyw™2 Both compounds are character-
ized by an intense transition in the region 2000~
2100 A, with no noticeable absorption at higher wave-
lengths. Since these spectra were taken at low concen-
tration, further experimental study is desirable to
establish if the low-intensity &—sf* transitions are
indeed present,

" A. Kaczmarczyk (private communication).

IN-SURFACE FACTORIZATION

A further physical factorization of the 3. problem
has been proposed.’® One may rehybridize the 3 sp?
hybrids at each boron so as to give an orbital (mostly
2s5) pointing “in’’ toward the polyhedron center, and
two orbitals, pure 2p, directed arbitrarily perpendicular
to the axial direction, i.e., tangential to the polyhedron
circumsphere, The latter set of 2V we call “surface”
orbitals. One then makes the physical factorization by
neglecting in-surface interactions, and thus factoring
the 3.V problem into one of degree V and one of degree
2N. The levels thus obtained for 5 of the polyhedra
discussed in the preceding section are given in Table III.

For the tetrahedron and octahedron there is no
significant change. But for the cube, icosahedron, and
cube-octahedron, the factorization has in each case
produced a superfluous bonding or nonbonding f,
orbital. When the interaction between in and surface
orbitals is accounted for, this level becomes quite anti-
bonding. But if we were to make predictions entirely
on the basis of the solutions of the physically factorized
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TABLE V. Energy parameters.

reconstructed reconstructed
4N 3N 3N= equatorial 4N 3N 3Ns equatorial
(a) Dy bicapped trigonal prism (N=8), B—B 1.74A € 0.012 ay 1.165 ey 1.193 & 2.201
u 0.113 w 1.3 u .
¢ —0.895 ¢ —0.895 ¢ —0.821 ¢’ —0.821 B Oy = L s 2O
"o 1 oo oo - i s % . " .
as 0.860 a2 0.817 a2 0.721  a. 0.717 bag 0.285 ay, 3.519 & 2.280
a' —0.839 ¢ —0.804 &' -—0.721 a” —0.615 oy 0.440 ‘
¢ —0810 ¢ -0.722 & —0.717 af —0.459 0492
¢ —0.742 a’ -0.692 €' —0.679 ¢ —0.070 ¢ 0.819
@’ —0.705 a” —0.659 ¢ —0.679 ¢ —0.060 b, 0.871
a” —=0.615 @/ ~0.615 @&’ —0.615 ¢ 0.900 e 1.236
¢ —048% o -0430 o -0.459 &' 1.804 2084
o —0.459 ¢ —0.298 ¢ —0.070 62
¢’ —0.420 ¢ —0.211 ¢’ —0.060 apex (Cs) @ 3620
e”" —0.197 e:, 0.338 e’ 0.084 a -—0.721 (¢) Ds bicapped pentagonal prism, (N=12), B—B 1.74 A
az’ :01%6 GI 0.359 6' 0.084 € —0.679 82” —0.913 62” _0.911 62” —0.856 egll —0.8560
s’ —0.059 ¢ 091 ¢ 0900 e 0.08 | %, Zgis %, Toee 2 Z0ss or —0.799
a” 0.106 @ 1.025 o 1.8%4 a 1910 0853 4! —o. b o
o 0.153 M" 1.706 as’ 1.910 €1 —0.833 a1 —0.847 a1 —0.833 a1 —0.758
o 0'309 a 2‘993 az' 1'910 a’ —0.833 &’ —0.840 e —0.799 g -—0.694
e’l 0‘338 . d 2 : e —0.823 & —0.820 @/ —0.738 a —0.675
' 0.576 611[ —8?22 ex','l —g;g‘é e’ —0.713 81:' —0.432
5 : e’ —0. a’ —0. e/ —0.713 ¢ —0.208
& T o’ 0738 &' —0.732 a —0.694 e —0.294
o’ 1.877 o’ —0.734 af —0.69% a —0.673 e’ 0.08
o 3065 @ —8.234 @ —-8.626 ! —0.620 &  0.048
N 62’ —U. 4 82’ —0,682 €2 ~0.620 61’ 1.480
b) Das bic d cube, (N=10), B—B L.74 A e’ —0.536 & —0.535 a —0.432 a/ 2.452
(B Do Bicapped eube; (i=i10), o —0.306 o' -0.499 &’ —0.298
by —8.32?93 b —8.927 biu —0.258 biu —0.852 62:’ —0.311 & -—0.011 e’ —0.294  apex (Cs)
agy  —0.86 e, —0.802 az. —0.81 e, —0.81 e —0.269 @& 0.122 e’ 0.088 . a —0.833
e 0,865 by -0.862 ay —0.810 ay —0.711 o' —0.217 e 0.633 & 0.660 & —0.713
bay —8.863 az, —0.860 (A —8.813 Aoy —-82%; 61'," —0.211 e;:' 0.894 e 0.660 e —0.620
a, —0.851 a, —0.792 4, —0.711  ay 0. a’ —0.201 ¢ 0.948 e 0.948 ¢ 0.660
er 0788 en —0.745 am —0.693 e, —0.295 o 0101 o 1136 & 1.480 a  2.178
B A e BT R e
Az, —U. dy — o 2, —U. £, —Uu. 82’ .17 azl 1,97 aa’ 2.178
g1, -0.711 b, —0.711 e,a —0.660 b:u 0,113 ay’’ 0.245 @ 3.754 @’ 2.452
b, =-0.711 a2, =—0.6835 en —0.660 by 0.871 a’ 0.553
gy —0.618 a5, —0.618 @y —0.618 e,  1.193 e/ 0.637
e, =—0.474 e, —0.407 e, —0.295 gy 2.280 &' 1.006
[ —0.404 ¢ —0.354 by, —0.192 &' 1.050
by —0.309 by 0.079 g —0.182 apex (Cu) o' 1.237
e —0.309 e 0.113 bay 0.113 & -—0.819 e’ 1.769
b —0.230 e, 0.463 € 0.312 &5 —0.687 az’ 2.031
a2, —0.195 ¢ 0.586 ey 0.312 ¢ —0.660 @’ 3.870
a, —0.110 by 0.871 by 0.871 e 0.312

8 A pex and equalorial levels arranged in order.

secular equation, we would conclude that cube-octa-
hedral B1sH;s2 and cubical CgHj still give closed shells,
but with very small energy gaps separating highest
filled and lowest unfilled levels. In the case of the
icosahedron, we would be led to the erroneous predic-
tion of the closed shell character of By,Hi with a minute
gap, and the prediction of instability for the doubly
negative anion. !

The failure of the in-surface factorization does not
imply that this simplification may not be used, with
certain precautions, to obtain an approximate picture
of the level ordering. The precaution to be observed is
the following. If two levels of the same symmetry and
near in energy are produced, one arising from the i
set, the other from the surface sct, then they will in
general interact in such a way as to make one of them
quite antibonding. Similar precautions must be kept in

mind in judging the results of other physical factoriza-
tions considered below.

EQUATORIAL-APEX FACTORIZATION

This factorization has been used in treating the pro-
posed ByHy? structure? (D bicapped antiprism)
and in discussing icosahedral bonding.” The procedure
applies to bicapped prisms and antiprisms where we
distinguish two apex atoms from N—2 “eguatorial”
atoms. The following physical factorization of the 3.V
problem has been proposed by Lipscomb: Orient the
three hybrids on each equatorial boron in such a
manner that one orbital is directed toward the adjacent
apex. Such an orbital set is illustrated in reference 7.
Now separate the orbitals in three noninteracting
groups: the 2(N —2) equatorial orbitals and two apical
groups each composed of 3 apex orbitals and 3(V—2)
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orbitals pointing toward the apex. In Tables IV (a)~
IV(c) and V(a)-V(c) we give the 4N, 3N, gpex,
equatorial, and ‘reconstructed” 3N (superimposed
apex and equatorial energies, to facilitate comparison
with 3N) energies for the antiprism (Dsg bicapped
trigonal antiprism, D, bicapped archimedean anti-
prism, Dy bicapped pentagonal antiprism=17, icosa-
hedron) and the prism (Dj, bicapped trigonal prism,
D,y bicapped cube, D; bicapped pentagonal prism)
series,

TasLE VI. Energy parameters.

reconstructed

4N 3N 3N» ring

(a) Dy trigonal bipyramid (¥=3), B~B 1.70 A

¢ —0.85 ¢ —0.863 o’ —0.858 ¢ —0.83%
a’’ —0.858 a)’ —0.858 ¢ —0.834 a’ —0.556
a4’ —0.853 o —0.823 ¢/ —0.649 ¢ 0.376
e’ —0.649 ¢’ —0.649 a’ —0.556 a’ 1.473
a’ —0.556 a’ —0.336 e 0.052
¢ —0.388 ¢ —0.301 a 0.272 polar
a’ —-0.104 ¢’ 0.335 e’ 0,335 a’ —0.838
a’ —0.063 ¢ 0.758 ¢ 0.376 ¢’ —0.649
e —0.052 o 1.108 a’ 1.108 ¢ 0.052
111’ 0. 124 ﬂ]l 2.567 Gl’ 1.473 (11, 0272
g 0.335 e 0.335
¢ 0.898 )’  1.108
a! 1,136
a’ 2.615
(b) Dutetragonal bipyramid (O octahedron, N=6), B—B 1.73 A
e —0.887 b, —0.886* b, —0.886 b, ~—0.886
Siu —0.831 @, —0.884¢ @, —0.829 e, —0.735
fig —0.671 a2, —0.829 e, —0.755 gy —0.671
2w —0.416 6. —0.819 @, —0.671 e, 0.421
Siw —0.14% @y, —0.671 e —0.671 by, 0,493
e —0.080 e —0.671 boy —0.416 @y, 1.732
@  0.204  be, —0.416 Cu 0.089
20 0.493 e. ~—0.416 @, 0.400 polar
Jtu 1.130 by,  0.493 €y 0.421  as, —0.829
a, 3.066 ¢ 0.493 by  0.493 e, —0.671
e 0.990 ¢ 0.493 b, —0.416
JSiu 1.023 g 1.023 e 0.089
a, 3.017 @, 1.732 a, 0.400
&y 0.493
a2, 1,023
(c) Dss pentagonal bipyramid (¥=7) B—B 1.74 A
a’ —0.870 a" --0.851 as” —0.851 ¢ -0.845
@’ —0.851 a' -—0.847 e’ —0.845 g’ —=0.726
a —0.849 e —0.845 a’ —0.726 & —0.709
e’ —0.849 &' -0.840 o —0.709 & 0.494
e’ —0.726 a’ -=0.726 a’ —0.669 ¢ 0.562
a’ —0.669 e —0.669 e’ —0.371 af 1.722
e —0.333 & -—0.508 &’ 0.219
e’ —0.371 &’ -0.371 e 0.494 polar
a2’ —0.349 &' 0.494 e’ 0.524 g —0.851
e —0.187 &"” 0.5324 o 0.562 e&” —0.669
o —0.071 " 0.740 & 0.704 &” —0.371
e’ 0.020 &' 1.420 & 0734 & 0.219
o’ 0.275 o' 3.273 ' 1.722  ¢" 0.524
e’ 0.524 a’  0.704
e’ 0.549 a2 0.734
a’  1.084
e’ 1.483
al' 3.311

8 Ring and polar orbitals arranged in order.

b Here orbitals lose Op symmetry when out orbitals are removed, since the
latter, in this factorization, were not chosen all equivalent. The correlations
O=sDjy here are e=+bi+a1, fi—rart-e, frsbrte, ai—ar.
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TasLE VII. Energy parameters.

reconstructed

4N 3N 3N ring

(a) Css trigonal pyramid (T tetrahedron, N=4), B—B 170 A

f2 —0.83 e —0.83 e —0.834 e -—0.84

hL —0.356 a ~0.840 a —0.556 g —0.556

fo =0.093 4q —0.556 e —0.495 ¢ 0.376

[2 0.033 e —0.534 a =0.426 a 1.473

o 0.038 ¢ 0.029 € 0.234

f2 0.747 ¢ 0.639 e 0.376 polar

0 2,158 @ 0.697 @ 0.949 ¢ —0.495

a1 2.138 O 1.473 a1 —0.426
¢ 0.234
ay 0949
(b) Ci tetragonal pyramid (N=3), B—B 1.74 A

b —0.882 b» —0.881 h —0.81 & —0.881

a —0.854 a ~—0.833 e —0.748 e —0.748

e —0.803 e —0.794 b —0.664 b —0.664

b —0.664 b —0.664 e —0.454 ¢ 0.421

e —0.542 ¢ —0.542 b2 ~-0.409 a» 0.492

h —0.409 b —0.409 a —-0.332 a 1.709

e —0.152 ¢ 0.106 e 0.368

a —0.126 a 0.492 e 0.421 polar

b —0.087 o 0.711 s 0.492 e —0.434

a 0.130 e 0.816 a 0.914 b —0.409

e 0.135 o 2.433 a 1.709 o —0.332

ds 0.492 e 0.363

@ 0.803 a 0.914

e 0.931

233 2.458

(¢) Cs. pentagonal pyramid (¥V=6), B—B 1.74 A

a  --0.8060 a4 —0.848 ez —0.845 e —0.843
ez —0.849 e —0.845 a: —0.726 a —0.726
g —0.813 ¢ —0.801 a —0709 & =0.709
a —0.726 a —0.726 a =0373 e 0.494
e —0.5392 ¢ —0.363 e —0.372 a 0.562
&g —0.371 e —0.371 aq —-0.14 a 1.722
a —0.220 ¢ ., 0.185 e 0448

ez —0.187 & 0.494 e 0.494 polar

e —0.042 o 0.636 I 0.562 & =0.373
ay 0.214 e 1.106 ay 0.737 €2 —0.372
7% 0231 [+5] 2527 dy 1722 a1 —0.144
2 0.549 e 0.448
@ 0.842 a1 0.737
e 1.173 ’

a1 2.554

8 Here Tq symmetry is lost when out orbitals are removed. The correlations
Ta—Cyy are froetay, fi—e+az, e—e, a1—ar.
b Ring and polar orbitals arranged in order.

On examining the closed shell possibilities from the
3N scheme we find BgHs 2, ByoHio?, BH2™? for the
antiprism series, with BgHs™? also a distinct possibility.
For the prism series we have BsHs™?, BioHyw, BpHp™
though these would not be configurations boron would
favor.

To make use of the factorization, it has been pro-
posed that for ¥=3§, 10, 12 respectively 3, 5, 7 electron
pairs be assigned to the eguatorial orbitals and 3 pairs
to each apical set. Now the equatorial/apical orbital
ratios were 12/12 16/14, 20/16, while this electron as-
signment would give electron ratios of 6/12, 10/12,
14/12, respectively. We would expect the factorization
to break down when these ratios differ considerably.
Indeed it may be seen from Table IV that the fac-
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TasLe VIII. Energy levels of the rhombic dodecahedron
(N=14) for B—B=1.70 A, a(2s) =—15.36 ev, a(2p) = —8.63
ev, K=—21.0ev.

E(ev) E(ev)

Level Slater * SCF-Slater
a1y 62.79 48.52
Jag 50.20 31.00
A2y 3134 35.29
& 30.88 24.86
S 30.63 38.61
Jiu 26.07 42.10
Jo 25.89 15.10
Sfau 21.88 30.10
fiu 15.03 25.33
ey 10.37 18.33
~ fiu —-0.92 4.18
-~ ay —5.86 —4.08
— —6.36 —3.06
~ & —-8.35 —=3.74
fio —8.65 —5.46
-— doy —10.15 —-9.89
—fiu —-11.72 —10.98
fiu —12.32 —12.12
o —14.08 —13.03
— a1 —15.13 —-14.65
T —16.53 —-16.84
€ —16.92 -17.10
Jru —18.61 —18.86
iy —19.66 —19.78

torization fails for the N=8 antiprism where another
equalorial level has come below the degenerate apical
level. It should be noted that the factorization is some-
what better for the prism series, since the prismatic
arrangement makes interactions between equaforial
orbitals smaller with respect to the more compact
antiprismatic configurations. The gaps between filled
and unfilled orbitals in the prism series are corre-
spondingly smaller,

RING-POLAR SEPARATION

This physical factorization has been devised for
N=3, 6, 7 bipyramids and V=4, 5, 6 pyramids.!® The
“ring” atoms are those at the base of the pyramid or
in the equatorial section of the bipyramid. Let us
hybridize the orbitals of the ring so that we have 3 sp?
hybrids at each atom in the plane of the ring, and a 2,
perpendicular to that plane. The hybrids are so oriented
that one of them is directed radially out from the center
of the ring plane. At the apices the usual set of sp?
hybrids is formed. We reduce the problem to degree
3N by removing outpointing orbitals, and then attempt
the physical factorization of separating for the bi-
pyramids the 2(V—2) sp? hybrids in the plane of the
ring from the (N—2)p, orbitals combined with six
apex hybrids. The latter form what we call the “polar”
set, The planar ring orbitals may be considered as
giving rise to NV —2 classical covalent bonds, consuming
2(N—2) electrons. Indeed we may note here the
empirical rule, to which we have found no exception
in our calculations, that whenever a molecule (such as

¥ W. N. Lipscomb, Proc. Natl. Acad. Sci. U. 5. 47, 1791 (1961).

CiH,, Py, CsHs) or a molecular fragment (such as the
B,, Bs, Berings) can be assigned a classical non-electron-
deficient single-bonded structure, the LCAO-MO calcu-
lation gives a closed shell structure with a large energy
gap. The I.LCAO’s may be transformed by a unitary
transformation into a set of equivalent orbitals which
closely resemble the localized saturated bonds.

The N—2 polar p, orbitals yield the familiar aro-
matic ring arrangement. In a naive approach the inter-
action of this aromatic ring with the six apex orbitals
is such that the lowest orbitals of the resultant polar
set are an ¢ and a doubly degenerate e. This may be
seen in the last column of Tables VI(a)-VI(b) for the
Bs and Bg bipyramids. Filling these orbitals and the
above mentioned N—2 ring orbitals requires then
N1 electron pairs, or a ByHy™? ion is predicted.
Unfortunately, the electron/orbital ratios in such a
separation differ greatly, being 6/6, 8/8, 10/10 in the
ring, 6/9, 6/10, 6/11 in the polar set for ¥=3, 6, 7,
respectively. In the actual calculation, a totally sym-
metric orbital (e, ¢;,) comes much too low in the
polar set for each case studied, indeed for V=7 it goes
below the ring e orbitals, leading to a prediction of a
closed shell for B;H;, in disagreement with the clearcut
prediction of B;H;? by the 3N calculation,

For the By pyramid, there are 2(V—1) orbitals in
the ring set, and N2 polar orbitals. The results of the
LCAO-MO calculations are given in Tables VII(a)-
VII(c). Considerations similar to the above lead us to
prediction of closed shells for ByHy or ByHy=4. The
electron/orbital ratios are 6/6, 8/8, 10/10 in the ring,
2/6, 2/7, 2/8 in the polar set, for ByHy, N=4, 3, 6,
and as expected the factorization is bad, a polar ¢ level
coming close to the least bonding ring e level. The
electron/orbital ratios for BvHy4 are 6/6, 6/7, 6/8 in
the polar set, and the separation correspondingly good.
However, such highly charged species are not expected
to be stable. Their carborane analogs may well exist,
pyramidal C,B.H,, C,BH;, C,H, (tetrahedrane).

It should be pointed out that for the ring-polar sepa-
ration as for other physical factorizations discussed in
this paper, judicious juggling of parameters whose
relative, but not absolute, magnitudes are assumed,
may lead, when coupled with correspondingly judicious
caution, to worthwhile level schemes, The actual failure
or success of an approximation is revealed only when
numbers are substituted for the parameter symbols.

OVERLAP INTEGRALS

We now ask, “What is the best basis set to use in
Eq. (1)? Shall we use atomic self-consistent field
(8CF) functions, Morse-Young-Haurwitz orbitals, or
Slater orbitals?”” To examine this question, two calcu-
lations of the 4.V type were carried out for the rhombic
dodecahedron, one using Slater overlaps, the other
using a mixed orbital set consisting of 2s Slater func-
tions and 2p SCTF functions for carbon. The V=14
polyhedron was chosen because of its symmetry (0x)
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and the large number of levels available for comparison.
Overlaps for the mixed Slater-SCF sets are given by
Mulliken!®. The SCF 2p function has much greater
spatial extent, and thus the overlaps are quite different,
particularly at greater distances.

The energy levels of the polyhedron are given in
Table VIIL. The SCF calculation was checked against
a previous calculation for this molecule by L. L. Lohr,
who has suggested the use of these functions.”® A
BuHii? species will yield a closed electronic shell. The
levels of the SCF calculation agree quite well with the
Slater levels, particularly for the bonding and nonbond-
ing states, which, after all, are the only ones that

9 R, S. Mulliken, J. Chem. Phys. 19, 900 (1951).
%1, L, Lohr (private communication).
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matter. There is also the general trend that the SCF
levels are more bonding or antibonding than their
Slater counterparts, this being explained by the greater
SCF overlap.

The conclusion we draw is that general predictions
are not overly affected by the use of different overlap
schemes. There is indeed no @ priori reason why atomic
SCF functions should be better basis orbitals for a
molecular calculation. Slater orbitals are easy to handle,
and will be used throughout our calculations.
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