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THE KAGOME NET: BAND THEORETICAL AND
TOPOLOGICAL ASPECTS*
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Abstract—The Kagomé net (a two-dimensional hexagonal network comprising triangles
and hexagons) is a building block of a number of intermetallic compounds. In order to
understand the electronic characteristics of such an array of atoms, extended Hiickel tight
binding calculations have been performed on a Kagomé net of boron atoms. Comparisons
have been drawn with other hexagonal nets, namely the graphite net and the close packed
triangular net, and topological relationships between these nets are used to explain simi-
larities in their band spectra. It is shown that simple Hiickel theory can be used to obtain a
rough estimate for the energies of the bands at specific high symmetry k-points, and a way
of representing and evaluating energies of crystal orbitals with complex coefficients is
discussed. A moments-based analysis of the relative energies of the three nets as a function
of electron count is also presented. The effect on its band structure of trigonally distorting
the Kagomé net is investigated. Finally, substituted ABC and AB, derivatives of the
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Kagomé net are discussed.

A particularly useful way of describing complex
solids is via a conceptual decomposition of the
structure into layers and nets.' This paper deals
with a planar net (the so-called Kagomé net)"?
which is found in a number of complex intermetallic
compounds, most notably the Laves phases
(MgCu,, MgZn, and MgNi, types).” The Laves
phases, which possess interesting electronic and
magnetic properties’ as well as being of great inter-
est from a structural point of view,™* are the subject
of a separate publication.’

The Kagomé net (1) is four-connected (each ver-
tex has four neighbours) and is described by the
indices (3636), meaning that if we start counting the
rings around any vertex from one of the triangles

.we encounter in order (independent of the direction
of motion) a triangle followed by a hexagon, then

-another triangle and finally another hexagon." It is
a hexagonal net, belonging to the plane group
pbmm.¢ The dashed line in 1 denotes the primitive
unit cell of the net.

More familiar two-dimensional hexagonal nets
are the graphitic (6°) net (2), and the triangular or
close packed (3°) net (3).

*This paper is dedicated to Dick Fenske, a scientist
who always tries to understand, deeply.

+SERC/NATO Postdoctoral Fellow 1987-1989.

1 Author to whom correspondence should be addressed.
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In the following sections we shall investigate the
electronic band spectrum characteristic of a
Kagomé net of main group atoms (boron), making
comparisons with alternative graphitic and close
packed layer structures. Calculations of the
extended Hiickel™ tight binding " type were per-
formed. Standard parameters for boron were
chosen (H;(2s) = —15.2 eV, H;y(2p) = —8.5 ¢V,
¢(2s) = L(2p) = 1.30).% Average properties were
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calculated using the irreducible wedge of the Bril-
louin zone shown in 4 (hashed area), with k-points
chosen according to the geometrical method of
Ramirez and B6hm.™

While there are hundreds of Laves phases, only
one of them contains boron. Many more do contain
aluminium. And there is no phase in which the
Kagomé net forms a separate bonded entity (we are
using here the words of a perceptive reviewer of this
paper). Why then study this net, for a main group
element that does not form it?

The reason is that the net is simple and sym-
metrical. Stackings of it are plausible. It deserves
to be studied; the question, one which will be
approached in this paper, is why does it not occur,
or, optimistically, what electron counts might fav-
our its materialization.

COMPARISON OF THE BAND
STRUCTURES OF KAGOME,
GRAPHITIC AND CLOSE PACKED NETS
OF BORON ATOMS

In the solid state, boron is known to form ico-
sahedral clusters which are bonded together in a
three-dimensional lattice.® The connectivity of the
boron atoms is six. This should be contrasted with
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the three-dimensional allotropes of carbon (e.g. dia-
mond) where the carbon atoms are four-connected.,
It is also well known that boron forms molecular
clusters with atom connectivities of five or more,®
while carbon maintains an approximately tetra-
hedral local environment.'® Electron-deficient
atoms such as boron (with fewer electrons than
valence orbitals) adopt highly-connected structures
(with more nearest neighbours than valence
orbitals) because such structures are known to sta-
bilize the small number of occupied orbitals to a’
greater extent.'' If this idea of increasing con-
nectivity in order to mitigate electron deficiency is
carried over into two-dimensions (think of three-
connected layers of carbon atoms in graphite) then
a layer structure based on Kagomé or close packed
nets of boron atoms becomes an interesting possi-
bility. We do not imply that two-dimensional
elemental boron nets are likely-—boron clearly likes
icosahedra. But perhaps formally charged boron
sheets of this type might occur in binary AB,
structures.

If we assume constant distances between con-
nected vertices (bearing in mind that for nets of
atoms the bond lengths generally increase with con-
nectivity) then the relative densities of the three
hexagonal nets (1-3) discussed above increase in
the order graphite (1.0) < Kagomé (1.125) < close
packed (1.5). Figure 1 depicts the partial band struc-
tures for nets of boron atoms (with B—B bonds of
1.8 A) with these structures. Unit cells were chosen
with one (close packed), two (graphite) and three
(Kagomeé) atoms (see 1--3).

The Brillouin zone (BZ) has the same symmetry
for all three nets (sce 4). Rather than using the plane
group pbmm, it is convenient to assign these struc-
tures to the three-dimensional space group P6mmm
(Dg),° since the horizontal mirror plane is a good
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Fig. 1. Band structures of boron with the graphite, Kagomé and close packed (2-d) structures. The
n-bands are highlighted and their symmetries with respect to vertical and horizontal mirror planes
are indicated.
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symmetry element, distinguishing between ¢- and
n-bands. The symmetries of the special points in the
BZ (4) (i.e. the “group of k. G,) for the space
group P6mmm are as follows: Gr = Dg; Gar = Dy
Gy = D,,, while the symmetries of the symmetry
lines in the BZ are: Gy = Gr= G, = C,,.'? We
expect, therefore, to observe degeneracies at I and
K, but not M. This is indeed the case, as can be seen
in Fig. 1. We are only here interested in the n-bands.
The labels of the bands (SA and AA) refer to the
symmetries of the = bands (S = symmetric, A =
antisymmetric) with respect to the two mirror
planes containing each of the specified symmetry
lines (where the first refers to the vertical plane
and the second to the horizontal plane).

From the Figure, it is evident that, for boron,
with three valence electrons per atom, all three
structures are metallic due to overlap of the ¢- and
n-bands (the latter have been highlighted). Other
interesting features of Fig. 1 include, for Kagomé
boron [Fig. 1(b)], the small dispersion of the top n-
band (), the non-bonding nature of the middle =-
band (n,) at M (the energy of the atomic boron
2p orbitals is —8.5eV) and the non-bonding nature
of the degenerate n-bands at Kin the graphite struc-
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ture [Fig. 1(a)]. We shall endeavour to explain these
features in the following paragraphs.

Each of these three planar sheet geometries pre-
sents interesting features, which are more or less
familiar. The graphite network is best known, the
Kagomeé net least known. So we will concentrate on
the latter.

The =-symmetry crystal orbitals of Kagomé
boron (at the high symmetry points I', M and K)
are sketched in Fig. 2, where the constituent atomic
p-orbitals are shown in projection). To understand
the figure, however, it will first be necessary to talk
a little about the shading conventions used and the
problem of the phase angle.

COMPLEX CRYSTAL ORBITALS:
PHASE ANGLES AND OVERLAP

We are used to discussing bonding in terms of
linear combinations of real atomic orbital
functions. In the case of a simple diatomic, such as
H,, the orbital overlap (as a function of internuclear
separation, r) is equal to +S(r). The overlap is
positive (stabilizing) when the orbitals are “in-
phase” (5a) and negative (destabilizing) when the

(1my,7s)

Fig. 2. Representation of the crystal orbitals of Kagomé boron at points ', M and K in the BZ.
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orbitals are “out-of-phase’ (5b). In the solid state,
however, in most regions of the BZ (including some
high symmetry points, such as K in the space group
P6mmm) the crystal orbitals have coefficients which
are complex (of the form a+ib, where i =/ —1)
rather than real. By depicting the coefficients of
orbitals on neighbouring atoms as vectors on an
Argand diagram we can calculate the angles made
between these vectors and the (real) positive x-axis.
These angles are the absolute “phase angles” (0) of
the orbital. However, in order to determine the size
and sign of the overlap between neighbouring orbi-
tals, it is the difference in “phase angle” (Af)
which is important. These concepts are illustrated
in 6, for an example where the coefficients have
the same magnitude (i.e. the vectors have the same
length, a®+b* = c*+d?).

y

imaginary

c+id

a+ib
a8

ez‘el

real

6

As a convention, we generally make one of the
coefficients arbitrarily positive and real (i.e. lying
along the positive x-axis of the Argand diagram),
since only the relative phase angles (i.e. the differ-
ences) are important, Classical “in-phase™ and
“out-of-phase” combinations have phase angle
differences (Af) of 0 and 180° respectively. The
general expression for overlap between a pair of
orbitals at separation r, with a phase angle differ-
ence of AG° between them, is:

Sae(r) = So(r) - cos (AD),

where Sy(r) is the overlap integral for A8 = 0°.

From this formula, it can readily be seen that, when -

a pair of complex orbitals are orthogonal
(A0 = +90°) the overlap between them is zero.
The crystal orbitals in Fig. 2 have atomic orbital
contributions related by factors e, ™, ¢*™/3 o™,
L.e. relative phase angles of 120, 180, 240 and
360° (=07). The shading conventions used to rep-
resent these phase angles are shown in 7. The Af

R. L. JOHNSTON and R. HOFFMANN

ot
%,

@5 N

7

values which are present in the crystal orbitals
shown in Fig. 2 are: 0 and 180° at I" and AM; and
0, 120 and 240° (—120°) at K. The corresponding
overlaps are as follows : ‘

S (“in-phase’) at a constant (arbitrary) separation
Sig0 = =S, (“out-of-phase™)
S120 = Sz40 = —0.58, (“half-out-of-phase™).

The ideas developed above can be extended from
the calculations of the overlap between complex
orbitals to an estimation of their energies by means
of simple Hickel theory.'’ Thus, the Hickel
resonance energy (f) can be given a phase angle
(difference) dependence :

Bao = Bo-cos (AD)

while the Coulomb energy («) is independent of
phase angle.

It should be noted that the three orbital shadings
shown in the representations of the crystal orbitals
at K are equally out-of-phase (or in-phase) with
respect to each other. This has an important effect
which is related to the theory of alternancy.'* An
alternant (two- or three-dimensional) network or
graph is one in which all rings or cycles (¢connected
subgraphs) are even-membered. These networks
(such as the square lattice shown in 8) have the
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property that the vertices can be coloured in one of
two ways such that no two adjacent vertices are
coloured the same. In terms of atomic lattices, this
means that there is always one crystal orbital in
which all of the nearest-neighbour interactions are
antibonding (A = 180°).'° If we have three differ-
ent colours (or types of shading) we can extend
this principle to (some) systems containing odd-
‘membered rings, such as the Kagomé net, which we
shall describe as three-alternant. In three-alternant
atomic lattices there will always be a crystal orbital
(e.g. m;at Kin the Kagomé net) in which all nearest-
neighbour interactions are equally antibonding,
though the phase angle difference (Af8) is now
+120°.

The small dispersion of the n;-band in Kagomé
boron [Fig. 1(b)] can be explained by examining the
crystal orbitals in Fig. 2. At M the n;-orbital is
antibonding along chains of connected boron
atoms. In a simple Hiickel sense,'® the energy of
this band would be «—2f. At T the n;-orbital is
one of a degenerate pair, one component of which
can also be represented as antibonding chains of
borons, with a Hiickel energy of a-28. The energies
of the bands in our extended Hiickel calculation
(and in reality) depart from the simple Hiickel
model through the inclusion of small non-nearest-
neighbour interactions. The next-nearest-neigh-
bour interactions at M are overall bonding while
those at I” are net antibonding, so the m;-band lies
at lower energy at M than the m,/m, pair at I [see
Fig. 1(b)]. At point K in the BZ, as mentioned
above, the m,-band describes a three-alternant pat-
tern. In simple Hiickel terms the energy of this
crystal orbital would be a+4(—0.58) = x—28,
once more. This time the next-nearest-neighbour
interactions are more bonding (each atomic orbital
has four next-nearest-neighbour orbitals which are
in-phase) than at I or M, so the n;-band shows a
minimum at K. Thus, the bonding character of the
ny-band changes very little throughout the BZ. In
the density of states (DOS) diagram for this net (not
shown here), the flat n;-band leads to a sharp spike.
Because this band is so high above any realistic
Fermi level, it is unlikely to have any consequence.

The 7,-band in the Kagomé structure is inter-
esting in that it is antibonding at I" (where it is
degenerate with =;), non-bonding at M (Hiickel
energy = «), as there are no non-zero coefficients
on adjacent sites and bonding at K, where it is
degenerate with m, (Hiickel energy = a+28+2
(—0.58) = a+p). From Fig. 1 it can be seen that
the 7 ,-band of graphite at M lics at almost exactly
the same energy as the Kagomé n,-band at X. In-
deed the Hiickel energy of this orbital (9a) is also
o+ B. Incidentally, the upper n-band (m,) of gra-

1905

/1, (K)

9c

phite at M (9b) is antibonding by the same amount
(Hiickel energy = a—f) as =, is bonding.'® As
for the Kagomé n,-band at M, the non-bonding
nature of the two degenerate n-bands at K for the
graphite structure [Fig. 1(¢)] can also be rational-
ized in terms of complex linear combinations
which have nodes at every second atom (9¢).

From Fig. 1 (a and b), it is apparent that the m,-
and n,-bands of the Kagomé net exhibit the same
pattern as the two =m-bands of the graphite net.
Figure 3 shows the spectra of crystal orbitals at T,
M and K for the two structures, with simple Hiickel
energies given, together with the spectrum of n-
MOQ’s obtained for the unit cell contents. It can be
seen that at all the high symmetry points of the BZ
the Kagomé =,- and m,-orbitals are stabilized with
respect to those of graphite by fi. The reason for
this similarity can be traced to the topological
relationship which exists between the two nets.
Thus, the loci of the centroids of the triangles in the
Kagomé net define the graphite net (similarly the
centroids of the Kagomé hexagons define the close
packed triangular net). The degenerate n-bands of
graphite at K (9¢) can be generated from those of
the Kagomé net (Fig. 2) by replacing a triangle (in
which all the atomic orbital contributions are in-
phase) by a single atomic orbital, with the same
phase. Triangles where there are three out-of-phase
(A = 120°) coefficients are replaced by single atoms
with zero atomic orbital coefficients (i.e. nodes).

The single n-band in the close packed structure
[Fig. 1(c)] is highly dispersed, due to the high con-
nectivity (six) of the lattice. The minimum energy
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Fig. 3. Comparison of the spectra of crystal orbitals at the high symmetry BZ points for the graphite
and Kagomé structures.
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occurs at I', where each atom experiences a bonding
interaction with its six nearest neighbours (10a). At
M, the n-band (10b) has a simple Hiickel energy of
o—2f and, indeed from Fig. 1 it can be seen that
the energy of the n-band at M is close to that of the
n;-band of the Kagomé structure. At K, the =-
band of the close packed structure has complex
coefficients, again with phase angle differences of 0
and +120°, and the crystal orbital may once more
be represented by a three-alternant colouring (10c).
The simple Hiickel encrgy of the crystal orbital
depicted in 10c is 2+ 6(—0.58) = «— 38, which is
the same energy as that of the n,-band of graphite
at I (11), where the connectivity is only three but
the neighbouring orbitals are completely (180°)
out-of-phase (since graphite is an alternant net).

Of the two-dimensional structures studied for
boron, the graphitic structure is calculated to be the
most stable (by 0.47 eV/atom over Kagomé boron
and by 1.46 e¢V/atom over the close packed layer
structure). This order of relative stability is also
reflected in the Fermi energies: —9.89 eV (gra-
phitic); —9.53 eV (Kagomé); —6.73 eV (close
packed), as well as in the B—B Mulliken reduced
overlap populations,'’ which decrease with increas-
ing connectivity : 0.84 (graphitic, three-connected) ;
0.67 (Kagomé, four-connected) ; 0.48 (close packed,
six-connected).

As they have odd numbers of electrons in their
unit cells, the Kagomé and close packed boron
structures would be paramagnetic. In the case of
Kagomé boron, a more likely structure would be
composed of anionic (B; ™), sheets with intercalated
alkali metal cations, leading to metallic solids with
the composition MB;.

COMPARISON OF THE RELATIVE
STABILITIES OF THE GRAPHITE,
KAGOME AND CLOSE PACKED
STRUCTURES BY THE MOMENTS
METHOD

The moments method'® has been applied to
Hiickel-based tight binding theory very successfully
by Burdett and Lee, to establish relationships
between geometric and electronic structures in a
variety of solids.'® The application of the moments
method to the construction of the DOS of a given
structure and to the calculation of the difference in
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energy between two topologically distinct structures
has proved particularly useful.

In mathematical terms, the nth moment is defined
as the trace of the Hiickel hamiltonian matrix (H)
to the nth power:'?

TrH)" = .E”

where the summation is over all the eigenvalues (E))
- generated by H. In geometric terms, the nth moment
(1) 18 equivalent to the weighted sum over all ¢losed
" paths of length » amongst all the orbitals of the
system.'’ Moments can also be split into ¢ and n
components if the topology of the solid permits
such separation, as in, for example planar nets.

Clusters containing all walks of length 2, 3 and 4
for the graphite, Kagomé and close packed nets are
depicted in Fig. 4, together with the calculated n-
only 2nd, 3rd and 4th moments. Burdett and Lee
have stated that the same qualitative trends are seen
for o+ 7 occupation as for n alone, except at very
low and very high orbital occupations where o-
orbitals alone are being filled. A moments-based
comparison of the energies of these three nets as a
function of electron count is complicated by the
fact that the connectivities are different. This leads
directly to the calculated differences in w,. One-
electron models can lead to wrong conclusions by
overestimating the p,’s, thereby leading to the
(incorrect) prediction that the highest-coordinate
net is the most stable at all electron counts.

In the cases of the Kagomeé and close packed nets,
there are a large number of three-rings and the
inherent instability of the three-rings at high elec-
tron counts (due to the nature of u;) can overcome
the discrepancy in u, and thus give a qualitatively
correct difference curve. The large difference in 5
for all three structures leads to the prediction of a

Graphite Kagomé Close Packed
45 392 402 6a°
Jn4 0 4p° 128°
un o 158* 28p* 908*

Fig. 4. Clusters used to evaluate the 2nd, 3rd and 4th
moments of the graphite, Kagomé and closed packed
structures.
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Fig. 5. Qualitative difference in energy curves as a func-

tion of the fractional occupation of the m-orbitals: (a)

comparing any two of the three planar structures; (b)
comparing all three structures together.

double peaked AE curve [see Fig. 5(a)] for graphite/
Kagomé, Kagomé/close packed and close packed/
graphite comparisons, with the more highly connec-
ted structure more stable until a certain band filling
below the half-filled mark after which the less
highly connected structure is more stable. Taken
together, the close packed structure will be the most
stable at very low counts, followed by the Kagomé
structure and finally the graphite net is most stable,
as shown schematically in Fig. 5(b). The stability of
graphite for the half-filled shell is not surprising,
since this is the situation for carbon. The large
differences in u, for the three structures may lead
to extra nodes in the AE curves or may just create
ripples on the u, curve. As mentioned above, the
differences in p, will extend the range of stability of
the more highly connected Kagomeé and (especially)
close packed structures to somewhat higher electron
counts.

ELECTRONIC STRUCTURE OF A
TRIGONALLY DISTORTED KAGOME NET

In the hexagonal Laves phases (MgZn, type) the
Kagomé nets of atoms (e.g. Zn) are often distorted
such that the triangles alternate in size, as shown in
12.7° Such distortions are due to the capping of
every second triangle above and below the Kagomé
plane by zinc atoms, so that the capped triangles
expand and the uncapped ones contract. It was
decided to establish the effect of such a distortion
on the n-bands of the boron Kagomé net.
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The B—B distances in the distorted Kagomé net
are 1.70 and 1.90 A, respectively. Since the average
is 1.80 A, the unit cell is the same size as in the
undistorted case. The partial (z-only) band diagram
for distorted Kagomeé boron is shown in Fig. 6. The
distorted Kagomé net possesses the same Bravais
lattice as the undistorted net so the BZ has the same
shape (4), though, as will be discussed below the
symmetries of the special k points are different.

Comparing Fig. 6 with Fig. 1(b) reveals one very
noticeable feature, namely that the lowest n-bands
at K (m,/n,) are no longer degenerate in the distorted
structure (the splitting is approximately 1 eV for
the distortion indicated above). In the following
paragraphs, this loss of degeneracy will be ration-
alized using two different, though related expla-
nations. The first makes use of symmetry arguments
while the second, more empirical but more apparent
explanation, uses simple ideas related to the chang-
ing of bonding and antibonding interactions as the
structure is distorted.

-2

Energy (eV)

]
L

r M K r

Fig. 6. n-Band diagram for boron with the trigonally
distorted Kagomé structure.

TRIGONAL
DISTORTION
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The distorted Kagomé structure no longer has a
six-fold axis and belongs to the plane group p3m]1. If
we include the horizontal mirror plane the distorted
Kagomé net belongs to the three-dimensional space
group Pém2 (D},).° The symmetries of the special
points in the BZ are as follows: Gr= Dy,
Gy = Cs.; Gg = Cy, (the symmetries of the sym-
metry lines are: Gy = C»,; Gr = G, = C,).!? Thus,
we expect to see some degenerate bands at I, but
not at M. The point K is less straightforward, how-
ever. Although the point group C;, does have
degenerate representations (¢’ and e”), these rep-
resentations are complex. The effect of this is that
there are no degeneracies at K, but rather those
bands of ¢’ or ¢” symmetry at K have their degener-
ate counterparts at — K. The character of the two
compounents of the e (i.e. ¢ or ¢”) representations
with respect to the three-fold rotation axis are
¢ and ¢&*, where ¢ =exp(27ni/3) and, therefore
e* = ¢xp(—2mi/3). These represent phase angle
changes upon C, rotation of 120 and 240° (—120°),
respectively. Such a reversal does in fact occur as a
consequence of time inversion (which is what inter-
relates + K). ;

The same lowering of symmetry and consequent
loss of degeneracy at K is observed on going from
graphite (P6émmm) to the boron nitride net (P6m2)
by replacing alternating carbons in the graphite
structure by boron and nitrogen atoms.?' As men-
tioned earlier, the Kagomé lattice is topologically
related to that of graphite by the fact that the cen-
troids of the triangles in the Kagomé net define
the vertices of the graphite net. Thus the distorted
Kagomé net, where alternate triangles are distin-
guishable, is topologically (and symmetry) related
to the boron nitride structure. The loss of degener-
acy between 7, and #, at K on going from graphite
to boron nitride can simply be explained by looking
at the functional form of the crystal orbitals at this
point. As shown in 9¢, r; and 7, can be expressed as
crystal orbitals with non-zero coefficients on either
the starred or the unstarred (but not both) sets of
atoms of the alternant graphite net. (The terms
starred and unstarred refer to the convention of
labelling every second atom of an alternant hydro-
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carbon with a star, so that no two starred atoms
are bonded.)'* Upon substituting the carbon atoms
by borons at the starred positions and by nitrogens
at the unstarred positions the Hiickel energies of
the w-orbitals are simply «(B) and a(N). There is a
loss of degeneracy simply because nitrogen is more
electronegative than boron [i.e. «(N) is more nega-
tive than a(B)].

" Asimilar analysis can be applied to the distortion
.of the Kagomé net. The n-symmetry crystal orbitals
of the undistorted net, at the point K, are shown in
Fig. 7. In this case the lowering in symmetry does
not come about due to atom substitution (i.e. the
loss of degeneracy is not due to changing o’s) but
rather arises out of the fact that the bond lengths
are no longer constant. The Hiickel f’s are smaller
for the longer bonds. If the central triangles of the
crystal orbitals shown in Fig. 7 are contracted and
the outer ones expanded, one component (labelled
n, in the figure) rises in energy because the anti-
bonding interactions increase and the bonding ones
decrease. The reverse is true for the second com-
ponent (m,) which, therefore descends in energy.
Thus, the degeneracy is lifted. The m; crystal orbital
is, however, essentially unaffected by the trigonal
distortion because the increased antibonding inter-
actions within the smaller triangles are approxi-
mately compensated by the decreased antibonding
interactions within the larger triangles. To deter-
mine which of these two changes wins out it is
necessary to know the change in interaction energy
(whether as a Hiickel § or some complex function of
the overlap integral S) as a function of internuclear
separation.

STRUCTURES OBTAINED BY MAKING
SUBSTITUTIONS IN THE KAGOME NET

As in the case of the graphite to BN “trans-
formation™, the symmetry of the Kagomé net can
be lowered by substituting some of the sites.
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(i) ABC substitutions

In 13-15 are shown three derivatives of the
Kagomé net, all with the stoichiometry ABC. The
substitution patterns shown in 13 and 14 are three-
alternant. The pattern in 13 has D}, symmetry (as
in BN) as half of the mirror planes of the Kagomé
net have been lost, as well as the C; axes at the centre
of the triangles. In contrast to the graphite/BN case,
however, the substitution results in a unit cell which
is three times as large as the original (i.e. nine
atoms). This means that the loss of degeneracy due
to lowering space group symmetry is countered by
increased degeneracies due to band folding.”™ It
should be noted that this pattern is that observed
for crystal orbital 7; at K (see Fig. 2).

destabilized

Ty

stabilized

unaffected

Fig. 7. Representation of the n-bands at X for the Kagomé structure, including the effect of the
trigonal distortion (indicated by arrows at left) on their energies.
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The substitution pattern shown in 14, while also
being three-alternant, is distinct from the first as
going along straight lines of atoms in the structure
the pattern is -A-B-A-B-A—-; -B-C-B-C-B-
and —~A-C-A-C-A-, rather than —A-B-C-A-B-
C- etc. This second pattern has much lower sym-
metry (C},), possessing C- axes (perpendicular to
the net) at the atom sites and at the centres of the
hexagons, with three atoms in the non-hexagonal
unit cell (assuming all bond lengths are unequal).
In terms of crystal orbitals, the shading of 14 is
equivalent to a complex representation of one of
the #,, m; pairat I'.

The substitution pattern shown in 15 is non-
alternant, consisting of A, B; and C; triangles.
Even with unequal bond lengths, three-fold sym-
metry is maintained at the centres of the hexagons
and half of the triangles, though all vertical mirror
planes and the C, axis have been lost. As for the
first shading, the unit cell is three times the size
of the Kagomé cell. This shading has the same
symmetry (C},) as the complex representations of
7, and 7, at K (see Fig. 2).

(i1} AB, substitutions

Replacing atom type C by B in the pattern shown
in 13 yields the AB, structure shown in 16. The

symmetry is D¢, once more, but with a nine-atom
(A;B,) unit cell. It is intriguing to think of this
pattern as representing a possible MC, solid, with
planar C, rings having each edge coordinated to a
metal atom (see 17). The possibility of metal-metal
bonding also exists.

7

A similar substitution in the ABC net of 14 leads
to an AB; net with parallel chains of B atoms coor-
dinated to A atoms, as shown in 18. A possible
realization of this pattern is the metal-poly-

R. L. JOHNSTON and R. HOFFMANN

cumulene MC, structure shown in 19. The sym-
metry is once again increased on going from ABC
to AB.,, with the generation of vertical mirror planes
leading to D}, symmetry.

SUMMARY

The electronic band structure characteristic of a
Kagomé net of boron atoms has been determined
and compared with topologically related graphite
and close packed (triangular) nets. The dispersion
of the bands in these structures has begen ration-
alized from a simple Hiickel viewpoint and a
method for determining the interaction between
atomic orbitals with complex coefficients has been
developed. This, together with an analysis of the
topological relationships between the three nets has
facilitated their comparison and enabled expla-
nations to be constructed. The application of a mo-
ments analysis has shown how the relative stabil-
ties of the three structures may vary with electron
count. The symmetry reasons for the loss of band
degeneracy at K upon trigonally distorting the
Kagomé net, have also been rationalized. Finally,
ABC and AB,; substitution patterns have been pre-
sented and the effect of substitution on the sym-
metries of the net discussed.
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