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Abstract: In the second part of this Essay, we leave philosophy,
and begin by describing RoaldQs being trashed by simulation.
This leads us to a general sketch of artificial intelligence (AI),
SearleQs Chinese room, and StrevensQ account of what a go-
playing program knows. Back to our terrain—we ask “Quan-
tum Chemistry, † ca. 2020?” Then we move to examples of Big
Data, machine learning and neural networks in action, first in
chemistry and then affecting social matters, trivial to scary. We
argue that moral decisions are hardly to be left to a computer.
And that posited causes, even if recognized as provisional,
represent a much deeper level of understanding than correla-
tions. At this point, we try to pull the reader up, giving voice to
the opposing view of an optimistic, limitless future. But we
donQt do justice to that view—how could we, older mammals
on the way to extinction that we are? We try. But then we return
to fuss, questioning the ascetic dimension of scientists, their
romance with black boxes. And argue for a science of many
tongues.
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In the first part of this paper we have set out in broad
strokes the confrontation between understanding and simu-
lation. An attempt was made to define the concepts we
value—understanding, explanation, theory. The philosophical
literature on these is old and vast; people have naturally
thought about how they know what they know.
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Theoretical chemistryQs romance with numbers devel-
oped, in part because the solutions of SchrçdingerQs equation
were perforce approximate. So computational chemistry
grew, organically, so to speak. Because chemistry was and is
primarily an experimental science, theoreticians in chemistry
naturally had to interact with chemical experiment. We
sketched how an abiding interest in reliable numbers in
chemistry, call it numerism, prepared the way for the new
wave of simulation.

That machine learning, neural networks would try to
supplant the traditional role of theoretical chemistry and
computational chemistry was not unexpected. The incursion
of artificial intelligence (or at least simulation) into chemical
theory was facilitated by the tremendous computer power
developing in our rich society.

In one section in the first part of this Essay we tried to
describe the techniques of simulation; in this we are likely to
have been less successful than in writing about theory in
chemistry. For here we are, for the most part, observers. In this
part we will exemplify how the applications of artificial
intelligence have spread to every aspect of human society,
hardly only theoretical chemistry. And that this permeation

carries not only opportunities, but real dangers, not well
thought through, to the human condition.

AIQs arrival on the stage of life was unavoidable, We will
have to live with it—there is no going back. But reaching for
more than survival, in the third part of this paper we will
sketch the construction of a creative conjoined future.

Encounters with a new world are always personal. So we
begin with a story of RoaldQs, one where he and his able co-
workers matched wits with an early structure-searching
program.

B1. Where Simulations Beat Chemical Intuition

Roald on SiH4 structure searching

About fourteen years ago Roald entered the field of high
pressure chemistry, drawn in by a then postdoctoral associate,
Wojciech Grochala, who was brave enough to go over and
talk to an outstanding physicist, Neil Ashcroft. We had been
colleagues for 40 years prior, but had never collaborated.
Well, we have made up for that, in a series of studies that bring
chemistry and physics together in the solid state at pressures
that approach those in the center of the earth.

Neil Ashcroft gave us good reasons for examining
specifically SiH4 at high pressure, so we began with that.
Silane is a rotational solid at P = 1 atm, with only rudimentary
knowledge of its crystal structure at ambient or high P
available to us. We examined some 13 potential structures,
four of which are shown in Figure 1.[1]

The first structure, T2 is just the unit cell of a crystal of
silane with one molecule per unit cell. ThatQs as primitive as
one can get in the realm of chemical intuition—the discrete
molecule exists, and there is a reason Si is under C in the
Periodic Table. We also studied variants with more molecules
in the unit cell. Structures O1, O2, O3 all contain six-
coordinate silicon. Trying these represents a deeper kind of
chemical intuition—six-coordination is, of course, tough for
carbon. But we know six-coordinate silicon compounds exist
(as in the rather common SiF6

2@ anion). Structure O2 is the
actual structure not of SiH4 but of SnF4—more of what
chemists call the iso-valence-electronic analogy at work.

It should be clear by now what Roald meant by “chemical
intuition” in choosing structures. He had in mind Mendeleyev
and MeyerQs Periodic Table of course. But not as a prescrip-
tion for identity (silicon is like carbon), but for its true
heuristic value, one that has allowed it, the Table of Tables, to
serve us for > 150 years. The Periodic Table is a graphic

Roald Hoffmann was born in a part of Poland that is now Ukraine in
1937. The US was good to him, as to many immigrants, and he became
in time a theoretical chemist. He has taught several generations of
chemists how one could productively use molecular orbitals in thinking
about organic, inorganic and solid state chemistry. With time, he also
built his own land between chemistry, poetry and philosophy. Relevant to
this paper, one way to see Roald’s involvement with computers is that the
science he did was entirely dependent on those marvelous tools. And yet
he spent all his efforts, over fifty years, in a way fighting computers,
transforming the multitude of numbers they produced into chemical
explanations.

Jean-Paul Malrieu was born in 1939, son of a couple of philosophers. He
went through the Ecole Normale Sup8rieure in Paris and started his
research in the Pullmans’ laboratory. He moved to Toulouse in 1974,
where he gathered an important Quantum Chemistry group. His targets
are both methodological, developing original techniques to treat the
electron correlation problem (with a particular focus on magnetism), and
interpretative, since he considers that the production of rationalizations,
models and even metaphors is as important as reaching accurate
numbers. Jean-Paul values deduction and loves translations from one
language of Quantum Chemistry to another, for instance between
Molecular Orbitals and Valence Bond Theory. He draws, and his social
concerns have led him to write several non-scientific essays. Figure 1. Four chemically-inspired potential structures for SiH4.
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depiction of both similarity and difference; silicon is in many
ways not like carbon, even if in other ways it is. PaulingQs great
concept of electronegativity also enters into our makeup of
a chemical intuition. As do the multitudinous measures of
atom and ion sizes, and the strength of bonds.[*]

We optimized the structures of these silane forms, and
others, using a workhorse of electronic structure theory for
extended systems, the extremely useful and reliable VASP
program, which does quantum mechanical, so-called DFT
calculations, with a plane-wave basis.[2] In the optimizations
we allowed departure from the initial symmetry.

As the pressure increases, the only imperative for atoms is
to get closer together. After the space between molecules (we
call it loosely “van der Waals space”) is squeezed out, the
atoms approach each other, or to put it in other words, the
coordination of atoms increases. For instance many NaCl-
type structures of AB compounds (six-coordinate at both
atoms), turn into CsCl ones (eight-coordinate) under com-
pression.[3] The program was allowed to change coordination,
and smart enough to do it if the enthalpy so dictated. The
structure at left in Figure 2 was one we found for SiH4 at
elevated pressure. It has each Si (golden atoms) connected to
8 other Si through 8 symmetrical hydrogen bridges. One has
the same number of valence electrons (8 per SiH4) making for
more bonds, now 8 two-electron three-center Si@H@Si bonds.
Intriguing, but understandable.

Other people got into the game, with brute force or clever
structure searching programs.[4, 5] At one end there were
algorithms that put one or more formula units into a cell,
place the atoms with a random number generator, eliminate
clearly untenable geometries, and finally optimize a goodly
sample of those that passed simple constraints.[6] Other
programs use “simulated annealing”;[7] still others use “mini-

mum-hopping” methods,[8] or “genetic algorithm” ap-
proaches.[9] In these one begins with a sample of randomly
generated geometries, selects the lowest enthalpy ones, then
forms a new generation by doing a variety of well-thought-
through transformations on previous low-enthalpy structures,
such as shearing or straining a structure, moving slabs past
each other, exchanging atoms. The intent is obvious—to
preserve local order, or what is good about a structure found
by chance, but to introduce enough variability to find still
better structures.

Soon after we published our best structure, that at left in
Figure 2, Pickard and Needs, using a random search algo-
rithm, came up with a lower enthalpy variant, at right in
Figure 2.[10] The structure is similar, electronically—you can
see the diborane-like hydrogen bridges in it. Each Si in this
structure shares four pairs of H atoms with 4 other Si.

HereQs the sad report: we have chemical intuition, but in
every case, absolutely every one, that RoaldQs group has tried,
the various structure-searching programs—from minimum-
hopping, through random searches to genetic algorithms—
have never done worse than he and his able co-workers did.
To put it another way, when we disagree, these structure-
searching methods have consistently beaten us. Meaning that
they have found lower enthalpy structures than we did. We
have had no option but to join them in using these programs,
as we do today.

Yet we have found a way to “add value.” so to say, to the
initially dismaying recognition of the computer program
besting us in finding low enthalpy structures. A hint for how
this was done is in the previous paragraph, when we (and
Pickard and Needs) apply a simile, “diborane-like bridges”.
The best structure is what a computer finds. Why it is such,
a human being teaches.

B2. Who Understands?

Artificial Intelligence, Searle’s room, Strevens on Watson

So the computer beats us all the time. Perhaps more so
when we escape the comfortable conditions (of pressure or
temperature) in which our intuition, based on preliminary
knowledge, forms. Not just at something trivial, as tic-tac-toe,
but at a game that we once thought marked intelligence, such
as chess. Even as we knew all along that chess masters were
far, far from Isaac Newtons or R. B. Woodwards. But now we
are closer to home—the intelligent game is predicting the
structure, say, of SiH4 at a pressure of 144 GPa. And a variety
of software packages does it better than we do, with all the
chemical intuition (over a hundred years of chemical knowl-
edge between us) that the authors of that paper could muster.

Our short answer is that the computer that has calculated
faster and reached an intellectual, publishable result that is
“better” (here a structure of lower enthalpy), i.e., a structure
not found by us, that computer… understands nothing of
chemistry or physics.

And as we give that answer, we enter several worlds, of
philosophy and emotion. In particular, people could say:
1. “What do you mean by ”understanding,“ our friends?”

Figure 2. Two structures found for SiH4 at a pressure of 144 GPa. The
one at left, found by Feng et al., by optimizing a lower pressure
structure, the one at right by Pickard and Needs through application of
a random searching program. In the left image Si atoms are gold, H
atoms green. In the one at right Si atoms are yellow, H atoms white.
Note the similar 8-coordination of the Si atoms, and 2-coordination of
the H atoms. Reproduced by permission from refs. [1,10].

[*] We highlight in grey those sections throughout this paper which use
more than the normal dose of quantum chemistry jargon. We need
the technical language, we feel, but we are painfully aware of the
barrier to understanding that technical jargon may create.
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2. “Who cares, if it is the number you want?”
3. “Bah, you’re just finding a way to get out of the situation

that the computer beats you at finding the best structure of
compressed silane. Human beings are so good at that,
inventing self-justifications.”

WeQve touched on understanding, and why human beings
want more than numbers in a section above.[11] The question,
ultimately that of artificial intelligence, has a long history in
philosophy. Let us mention here two professional views, and
one pragmatic one.

The philosopher John Searle published in 1980 a scenario
called “The Chinese Room Argument.”[12] He imagines
himself in a room with an all-powerful Chinese language
translation program. People introduce into the room slips of
paper with Chinese characters. He and his reference books
and superb program return translations. You and we have
seen in our time how Google Translate has made a significant
jump in the last couple of years in approaching just that
performance, through an implementation (as we understand
it) of neural network approaches. The impression to outsiders
emerges that whoever/whatever is in the room knows
Chinese. (Figure 3.)

SearleQs proposition has occasioned extensive and read-
able discussion, sufficient to warrant a substantial entry in the
Stanford Encyclopedia of Philosophy.[13] You will not be
surprised to learn that there is wide disagreement. And the
connection to the Turing test[14] is evident. TuringQs seminal
paper begins as follows: “I propose to consider the question,
RCan machines think?Q”

They beat us at finding structures, they beat us at chess.
Michael Strevens has written an excellent paper on Watson,
the IBM computer better at chess, go (the game), and
Jeopardy than we are. In one passage he discusses the
computer dealing with the phrase “the moon has set”,
Strevens writes

“Watson and you both answer questions by seeing con-
nections between things. But they are different kinds of
connections. Watson picks up from things it reads that there
is a correlation between a sphereQs rotating and a fixed point on

its surface having a constantly changing view of the rest of the
world. You grasp why this correlation exists, seeing the
connection between the opacity of the Earth, lightQs traveling
in straight lines, and geometry of the sphere itself. For you the
statistics are a byproduct of what really matters, the physical
and causal relations between things and people and what they
do and say. Grasping those relations is what understanding
consists in. Watson lives in a world where there are no such
relations: all it sees are statistics. It can predict a lot and so it can
know a lot, but what it never grasps is why its predictions come
true.”[15]

Strevens says that Watson knows many facts, and can
build certain relationships between them. But he/it lacks
understanding. We imagine that people (not we) would argue
with him on the meanings of “grasp” and “why.” (Figure 4).

Will the programs in time do better than we can not only
in games, but in everything? Some things will be easier for
a robotic computer than others.[16] Luciano Floridi makes an
important distinction between “historical” and “synthetic”
data. The former comes from cases studied earlier—whether
medical diagnoses, or games played by masters, the latter
generated entirely by the rules of the game. Chess programs
started using historical data, but have evolved to synthetic
ones. Where the rules of the game are well-defined (say chess
or go), the case-crunching speed of the computer will always
devise a winning strategy, and expeditiously so. “Put more
epistemologically, with synthetic data, AI enjoys the privileged
position of a makerQs knowledge, who knows the intrinsic
nature and working of something because it made that
something.”[17]

We are not professional philosophers, but we do know
how our piece of the world, chemistry and physics, work. Ours
are open-ended games, the rules in a way made up as we go
along. There is no way to anticipate which molecules and
reactions will be at the frontier ten years hence. Who would
have predicted the ascent of MOFs (Molecular Organic
Frameworks) or topological materials? Yet a significant part
of what we do, day by day, is rule-bound, Looking ahead
(part C) to a the future of understanding and AI moving

Figure 3. An artists’s imagination of Searle’s Chinese room. From
https://theness.com/neurologicablog/index.php/ai-and-the-chinese-
room-argument/.

Figure 4. The second game betweenn AlphaGo and Ke Jie. From
https://www.intergofed.org/igf-news-feed/google-ai-defeats-human-go-
champion-ke-jie.html.
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ahead hand in hand, it will be important to find the pieces of
our activity which can be handed over to computers and
robots.[18]

A matter of interest to an experimentalist might be some
observable—be it a dipole moment of a molecule, or the
thousands of lines of a rotational spectrum that allow an
astrophysicist to identify a molecule in the interstellar
medium. Pace Dirac, finally one can get that dipole moment,
the frequency of those lines, to a level where we (and our ever-
skeptical astrophysicist colleagues) can trust them. So sup-
pose a researcher does his or her stuff well, calculates the
dipole moment of a molecule to a sufficient accuracy that the
experiment measuring it has to revised. And now comes along
a fellow chemist, who wants to know whether that dipole
moment would go up or down if one substituted a nitro (NO2)
group for a hydrogen. Remember, substitution, variation in
chemical structure, is what chemists are exceptionally good
at—theyQve made more that 100 million new molecules in
200 years of frenetic activity.[19]

If the straw-man researcher says “Give me a while; I need
to go back to the computer to tell you what happens,” then we
posit that he doesnQt understand the molecule. But who does?
Is it the computer? Is it the person who wrote the software?
We would argue that none of these understand what a dipole
moment is, nor how one might estimate it.

And now we are back to the chorus of our friends who
would disagree with Searle, with Strevens, with us.

Meanwhile simulation marches on. How can we remain
human in this world? You bet we will. And we will try, just try,
to lay out a roadmap for coexistence of simulation and
understanding in our profession.

But first let us return to simulation in the context of
quantum chemistry, and in the relationship of experiment
with theory.

B3. Quantum Chemistry, † ca. 2020?

In predicting molecular properties, one could move
methodically down the time-honored path of improved
theory and associated computation (see section A11 in first
part of paper). Or take another way, via the numerical
resolution of the fundamental equations, assuming some
theoretically grounded approximations, on to more phenom-
enological models, the parameters of which might in fact be
obtained by machine learning from big data sets. The path
sketched is not a straight line; we describe a cut-and-paste
road, with occasional overlaps of methodology.

But things are moving fast, and a new situation confronts
the next generation of chemists. We are seeing the beginning
of a flood of papers in which AI methods are specifically
applied to molecular energetics.[20–22] The only SchrçdingerQs
equations that will be solved will be those for the training sets.
In view of the progress of these tools, it is likely that Machine
Learning and Artificial Neural Networks will in the near
future compete efficiently—in quality, in cost—with the best
quantum chemistry tools.

Then the community of number-oriented quantum chem-
ists, those who now help the experimentalists by providing

lacking quantitative information, perhaps beyond them the
whole quantum chemistry community, will face a dramatic
problem. Will their function be relegated to thinking of the
data sets most suitable for the efficiency of machine learning?
Or (better) of tuning the architecture of the deep neural
networks, so as to allow a program to find the optimum
correlation most expeditiously? Will the community of the
quantum chemistry code users, follow the destiny of super-
market cashiers these days and that of taxi drivers tomorrow?
Not only menial, but highly qualified jobs are indeed
threatened by these extremely well-performing artificial
intelligence (AI) tools.

There is much attention in the community, and big
company competition shading to hype, on the subject of
quantum computing. It will come, and it is likely to be
implemented in quantum chemistry. But one thing is clear—
when we have those quantum computers, they will get the
numbers really right. But they will not provide the least bit of
interpretative wisdom.

It would seem as if getting the energies of molecules (or
their electronic densities) is then within reach, near. But the
distance from getting the correct number to Theory, as it was
defined for several hundred years, as it was and is taught to
chemists and physicists (taught in a way whose value we have
affirmed), that distance actually increases. Theory provided
and provides understanding. The gray future we have
pessimistically sketched provides a reliable number.

And… in some sense the distance to story-telling also
increases. This is evident from the extreme case of neural
network recognition: we are unable to tell from which sum
and combination of details we (and not the App we have
purchased for the purpose) immediately recognize Burt
Lancaster in this picture of a man peering out between
curtains in Palermo.

It may be that the future is rosier than we imagine, and
that AI programs that translate what neural networks do to
humans will come on line. We hope so; some pointers in this
direction have been mentioned at the end of Section 18,
Part A.

Ultimately, we believe that Quantum Chemistry as
a science may survive if it accepts and develops its story-
telling dimension, if it fulfills its duty to identify “why” things
are the way they are. The challenge that new predictive tools
will present to us is how to keep our discipline a science,
rather than a fancy spectrometer.

Figure 5. Burt Lancaster in Luchino Visconti’s 1963 film “Il Gattopar-
do.” From https://www.imdb.com/title/tt0057091/mediaviewer/
rm1042818304.

Angewandte
ChemieEssays

13160 www.angewandte.org T 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2020, 59, 13156 – 13178

https://www.imdb.com/title/tt0057091/mediaviewer/rm1042818304
https://www.imdb.com/title/tt0057091/mediaviewer/rm1042818304
http://www.angewandte.org


Optimism is also expressed in a Perspective by Frank
Neese and co-workers, with the title “Chemistry and Quan-
tum Mechanics in 2019: Give Us Insight and Numbers.”[23]

But before we outline the pathway to that ideal, let us
descend further into simulation. Big and bigger, it is with us,
testifying to the cleverness of humans guiding those incredibly
swift tools of information technology. And the seductions that
await them.

B4. Simulation!

Large scale applications in theoretical chemistry

We wish to show some examples of the more ambitious
efforts in simulation, in the context of chemistry. The first
example does not involve machine learning as such, but
a study with a very large number of human and machine-
guided computations.

The project was described as follows:
The Harvard Clean Energy Project (CEP) is a theory-

driven search for the next generation of organic solar cell
materials. CEP has established an automated, high-through-
put, in silico framework to study potential candidate structures
for organic photovoltaics.

The current project phase is concerned with the character-
ization of millions of molecular motifs using first-principles
quantum chemistry… The results are compiled and analyzed in
an extensive reference database and will be made available for
public use. In addition to finding specific candidates with
certain properties, it is the goal of CEP to illuminate and
understand the structure property relations in the domain of
organic electronics. Such insights can open the door to
a rational and systematic design of future high-performance
materials. The computational work in CEP is tightly embedded
in a collaboration with experimentalists, who provide valuable
input and feedback to the project.[24]

As of 2013, the Project had catalogued and released to the
public some 350 million individual DFT calculations on > 3
million molecules.[25–27] There was a Phase 2, working with the
World Community Grid and IBM.[28, 29]

Various physical characteristics of importance to photo-
voltaic function were calculated. Figure 6 at left shows
a calculated (calibrated in a certain way) LUMO (lowest

unoccupied molecular orbital) energy for a given HOMO
(Highest occupied MO). Figure 6 at right correlates open
circuit voltage Voc and short-circuit current density Jsc for
a large data set (apparently tens of thousands of molecules),
which pass a preliminary screening. Desirable molecules for
photovoltaics should have high products of these quantities.
In a compromise, the authors say “The best molecules,
according to the present study, are located in the upper left
region of the figure.”

The best candidate solar energy harvesting materials from
this study are given in the Supporting Information of some of
the papers published. A dataset of & 300 molecules for
calibration has been published.[30] It turned out that synthe-
sizability of the compounds was a major factor that wasnQt
initially considered. The Harvard chemists did in the end
come up with a set of acceptors deemed synthesizable.[31] It
would be interesting to know the extent of support of this
well-publicized project.

The chemists involved learned from their experience. In
another study, they came up with DA2T, a very promising
(and synthesized in a collaboration with Zhenan Bao) organic
semi-conductor.[32] _lan Aspuru-Guzik notes that from this
work he learned that “Close collaboration with experimen-
talists since the conception to the realization is key.”[25]

Turning to machine learning and neural networks, we
show one recent example.[22] This study looks at 7211
molecules, of which 5000 are in the training set. The program
uses neural networks, supervised machine learning, and atoms
and coordinates as input. Once written, it takes 24 hours of
computation to train the program; the next molecule is
computed in 100 ms. 14 molecular properties are examined,
computed in several ways. Table 1 shows the average errors of
the fitted relationship for 14 computed characteristics of the
molecules, calculated by a variety of methods. ThatQs pretty
good.

Some of the properties are obviously correlated with each
other (for instance the ionization potential computed by
a certain method with the energy of the highest occupied MO
(HOMO) computed by the same method). Some properties
clearly are not correlated, nor would one expect them to be
so—for instance the atomization energy of the molecules and
its HOMO energy. The lack of correlation is clearly seen in
the left diagram in Figure 7. After training, the “Quantum
Machine” of the program is applied to 2000 molecules not

Figure 6. Left: Gap range (HOMO and LUMO energies for 2.3 million molecules in the Harvard Clean Energy Project. Reproduced by permission
from Ref. [26], “Lead candidates….”. Sought high performance molecules should have characteristics in the small white circle. Right: Top 10 % of
molecules with high open circuit voltage Voc (green) and highshort-circuit curent density Jsc (blue) and high product of the two measures (red).
from “Accelerated…).
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part of the training set. In the last layer of the neural network
application, the molecules are classified by their values of two
principal components (in the statistical sense, PCA1 and
PCA2). The color coding corresponds to the HOMO. A clear
correlation is evident.

The use of machine learning for deriving “force fields”,
i.e., the parameters that describe the energy components in
a subsequent deterministic or stochastic calculation of
observables, is both an obvious application of machine
learning,[33] and philosophically a complex process. No matter
how those potentials were derived (from empirical ideas, from
fitting quantum chemical calculations) they are subsequently
used in a numerical simulation. So why not fit them by
a program that uses no chemical intuition in the form of the
functions fitted? Why waste the time of a graduate student,
why demonstrate to him or her the origin and distance-
dependence of dispersion energies, for something that a pro-
gram can do? We would argue that some understanding can
both make the fitting process more efficient, and, if fewer
terms are involved in the fitting, may even hint at the
underlying physics. And there is some recent work along
these lines.[34]

To us, however, some line is crossed when in the fitting
process, in order to get the best fit for the major factors, one

accepts values for some “minor” molecular observables that
are nonphysical.

The number of machine learning studies in chemistry and
materials science has grown tremendously.[35] Naturally news-
worthy are ambitious combinations of proposal of synthetic
routes with automated, robotic synthesis·[36] The secondary
literature (comments on primary papers) delights in the
opportunity these studies offer; journalists canQt resist the
lure. So in two sequential issues of C & E News one sees
articles on “Machine learning predicts electron energies,[37]”
“Machine learning offers fast, accurate calculation,[38]” and in
Chemistry World, “Machine learning makes light work of
hard materials.[39]” Some of the discussions are sober,[40–42]

many are not. As we said at the outset, the feeling one gets is
somewhere between a jumping on a bandwagon and being hit
by a tsunami.

B5. Learning Theory From Simulation

A few (too few) good examples

None of the fans of simulation and big data will be
inclined to think that we can say anything fair about
simulation. But let us detail a search we undertook in the
literature with the following aim: to find in applications of
machine learning any sign that from the good learning
exhibited (or the correct 3D structures predicted in a search)
that one could draw a novel conclusion with chemical or
physical consequences. Something beyond numerical agree-
ment. Something analogous to seeing a diborane-like bond in
a silicon hydride at high pressure. We found two examples
free of hype; we sincerely hope for more, as they would help
to construct the pasarelle between simulation and under-
standing that we seek.

Mueller, Johlin and Grossman looked at an industrially
important material, amorphous silicon, for the physical
factors that favor hole trap depths.[43] The reference here is
to semiconductors, which have a moderate band gap between
filled states (valence band) and ones empty of electrons
(conduction band). Defects and impurities, in the form of
vacancies, extra atoms, may introduce new levels (holes) as
traps for electrons. {Figure 8} ItQs best to have the authors
speak for themselves, in the abstract of their paper:

“Genetic programming is used to identify the structural
features most strongly associated with hole traps in hydro-
genated nanocrystalline silicon with very low crystalline

Figure 7. Schematic progress as the Quantum Machine of Montavon
et al.[22] works.

Table 1: The quality of the estimate of a number of computed molecular
characteristics, from Montavon et al. (Ref. [22]).[a] The acronyms in
parentheses refer to various approximate computer methods applied.

[a] MAE is the mean average error, RMSE the root mean square errors.
The mean value of the property is given for all 7211 molecules studies,
the RMSE and MAE for the 2211 molecules not in training set. Units are
eV for properties except polarizability a.

Figure 8. A sample of nanocrystalline Si:H structure. Blue spheres
represent amorphous Si, green represent crystalline Si, and white
represent H. Reproduced with permission from Phys. Rev. B.
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volume fraction. The genetic programming algorithm reveals
that hole traps are most strongly associated with local
structures within the amorphous region in which a single
hydrogen atom is bound to two silicon atoms (bridge bonds),
near fivefold coordinated silicon (floating bonds), or where
there is a particularly dense cluster of many silicon atoms.”[44]

The authorsQ claims are commendably modest. In the
body of their paper they say “…we had not considered bridge
bonds to be a likely feature of hole traps prior to the machine
learning results.” You can see why we like this study. It adds to
our understanding. A chemical theoretician could go on to
explain why bridge bonds lead to hole traps.

In a second example, Brandt et al. approached the
problem of studying complex conformational rearrangements
in biomolecular systems.[44] Let us use their own words to
describe what they did:

“Starting with a data set of molecular coordinates (ob-
tained from experiment or simulation) and an associated set of
metastable conformational states (obtained from clustering the
data), a supervised machine learning model is trained to assign
unknown molecular structures to the set of metastable states. In
this way, the model learns to determine the features of the
molecular coordinates that are most important to discriminate
the states.”

The very positive feature of this work is that it focuses on
structural aspects that any chemist would choose (would some
call this “biased”?)—essential coordinates such as specific
distances or dihedral angles—in describing the system. Two
particular, well-established model problems—the folding of

a piece (HP-35) of a protein, villin, and a special “hinge-
bending” motion of 4T lysozyme were studied.

The Brandt et al. machine learning approach teaches
them (us) that certain slow motions are related to the function
of villin, and reveals a mechanism for the lysozyme “which
has only recently been detected independently with consid-
erable effort.”

We do not doubt that we have missed other real examples
of new chemistry and physics learned via AI, new “laws” of
nature that can be taught, that can enter the creative toolbox
of the scientist. People will let us know about them. For now,
there is much hype.[45, 46]

B6. Complexity, Utility

Does the quantity of information to be processed lead to
a qualitative change in what understanding means? Utility and
evolution, a lovely example

An interesting question that runs through philosophical
discussions of machine learning and simulation is the follow-
ing: When the explanation of some physical phenomenon
becomes so complex, because of many competing influences,
that no human being can see his or her way through the welter
of data, would that be a place for machine learning? The point
is made, for example, in a paper by Bartlk et al.[47] We would
argue that one should still try and understand the basic
physics, and then the different factors that go into an
observable can be weighed. That we cannot see our way out
of a complexity is not a good argument, someone else—
a patterner of chaos—will come in time to do it. Onsager and
Woodward did the unimaginable.

There is no doubt that evolution engenders variety (with
no attendant implication of utility to us). The beautiful and
terrible world of nature is daily evidence of this. Machine
learning and neural networks may be seen as products of
cultural evolution, as much as the “classical” theory the
authors practice. The developing combination of computer
tools and evolution may lead to quite incredible outcomes.
We mention one here.

Frances ArnoldQs group at CalTech uses the diversity of
heme-binding proteins as the basis for evolving under
laboratory conditions new enzymes. These catalyze non-
biological reactions, prospectively ones useful for forming
some molecules, some bonds that are normally difficult to
form.[48, 49] Consider, for instance the formation of a C@Si
bond by the reaction of Figure 10.

Specific C@Si bonds are difficult to form. And biological
activity often is highly specific—one enantiomer (mirror-
image environment of a carbon atom) may be active, the
other not. The Arnold group has combined machine learning
and directed evolution to evolve enzymes that do this
reaction, in one case with a yield of 93 % “enantiomeric
excess” of one chiral isomer, in another case with 73 % of its
mirror image.[50] Pretty incredible!

No question as to the utility of this process. But does it
lead to an increase in understanding? The question of utility
as a criterion of value, aesthetic, ethical, or epistemological,

Figure 9. Structure of T4 lysozyme in the open (orange) and closed
(blue) state, indicating opening and locking of the molecule (Ref. [44]).
Reproduced with permission from J. Phys. Chem. Lett.
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has been argued in philosophy for ages.[51, 52] Our tentative
position is that utility can certainly form value, not only in
benefitting human beings but also in furthering knowledge.
Utility may also mean destruction, as we sadly know. Utility is
not intrinsic, it matters who is acquiring that knowledge, for
what purpose, and what they do with it.

B7. And in the World at Large

A collage of simulation/AI uses in society; from funny to scary

Simulation, big data, machine learning are all around us,
intruding into our lives. And helping us. One can be
a curmudgeon and complain that our ability to read maps
has atrophied in the age of the GPS, but one has to realize that
maps were once an invention, and hardly available to all. And
when one is lost in a tangle of one-way streets always going
the wrong way, we grow grateful for this incredible program-
ming and geolocation invention.

Let us provide here a potpourri of ways that IT and AI
have penetrated our lives.
1. High-frequency traders find microwaves suit their need for
speed

“An 800-foot microwave tower in a Belgian cow pasture
transmitted messages for the U.S. armed forces during the Cold
War. Now it has been enlisted in financial combat, as high-
frequency traders fight to shave microseconds off transmission
times. ”[53]

Michael Lewis, in his book “Flash Boys,”[54] says high-
frequency traders are willing to go to extraordinary lengths to
gain this speed advantage—including laying the shortest, and
therefore straightest, possible fiber-optic cable between the
Chicago stock exchange and the New York one (based in New
Jersey), a distance of 827 miles.

We suspect that our retirement funds, public or private,
are being traded today over just such networks, with decisions
being made not by the quality of the company, its perfor-
mance, or social consequence, but based on algorithms that
make near instantaneous decisions based on trends, or on
small fluctuations in stock prices. It is hard to find a reliable
estimate of the percentage of security trading done by
algorithms, but we have not seen a number below 70 % of

all stocks. Some so-called “hedge funds” trade only through
algorithms.

The advantage of algorithms is given as:
Algorithmic trading eliminates human emotions that

prevent investorsQ behavioral problems in holding losses for
a longer time and selling profitable securities too early. It also
tests trade ideas on historical data to eliminate poor trading
ideas and retain the good ones.[55]

The algorithms may be set by human beings (an investor
together with a consultant), but increasingly they are set by
automatic programs or robots. Notice, however, that in this
case that speed does not create wealth, only acts on its
distribution. From the same website:

In future, machine learning will shape algorithms that can
pick the techniques by themselves.[56]

2. Buying for the baby
Andrew Pole had just started working as a statistician for

Target in 2002, when two colleagues from the marketing
department stopped by his desk to ask an odd question: “If we
wanted to Figure out if a customer is pregnant, even if she
didnQt want us to know, can you do that?

We knew that if we could identify them in their second
trimester, thereQs a good chance we could capture them for
years,“ Pole told me. ”As soon as we get them buying diapers
from us, they’re going to start buying everything else too. If
you’re rushing through the store, looking for bottles, and you
pass orange juice, you’ll grab a carton. Oh, and thereQs that new
DVD I want. Soon, you’ll be buying cereal and paper towels
from us, and keep coming back.“[56]

TargetQs analysis was so good that it sent coupons to
a young customer before she told her father she was pregnant.
3. The joy of skiing

“Ski resorts are even using data to understand and target
their patrons. RFID tags inserted into lift tickets can cut back
on fraud and wait times at the lifts, as well as help ski resorts
understand traffic patterns, which lifts and runs are most
popular at which times of day, and even help track the
movements of an individual skier if he were to become lost.

Imagine being an avid skier and receiving customized
invitations from your favorite resort when thereQs fresh powder
on your favorite run, or text alerts letting you know when the
lift lines are shortest. They’ve also taken the data to the people,
providing websites and apps that will display your dayQs stats,
from how many runs you slalomed to how many vertical feet
you traversed, which you can then share on social media or use
to compete with family and friends.“[57]

4. Not all computers are equal
Orbitz Worldwide Inc. (a travel website) has found that

people who use Apple Inc.Qs Mac computers spend as much as
30% more a night on hotels, so the online travel agency is
starting to show them different, and sometimes costlier, travel
options than Windows visitors see.[58]

5. Sexual orientation
“Kosinski first mined 200,000 publicly posted dating

profiles, complete with pictures and information ranging from
personality to political views. Then he poured that data into an
open-source facial-recognition algorithm—a so-called deep
neural network, built by researchers at Oxford University—
and asked it to find correlations between peopleQs faces and the

Figure 10. Carbon-silicon bond formation catalyzed by heme-contain-
ing enzymes. The products at left and right have opposite chirality
(R,S) at carbon.
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information in their profiles. The algorithm failed to turn up
much, until, on a lark, Kosinski turned its attention to sexual
orientation. The results almost defied belief. In previous
research, the best any human had done at guessing sexual
orientation from a profile picture was about 60 percent—
slightly better than a coin flip. Given five pictures of a man, the
deep neural net could predict his sexuality with as much as 91
percent accuracy. For women, that Figure was lower but still
remarkable: 83 percent.”[59]

The article by Cliff Kuang from which this passage is
quoted says that as researchers in artificial intelligence see the
remarkable outcomes of their programs, they are increasingly
puzzled by what they find and how the programs reach their
conclusions.[60]

6. Predicting recidivism
The reference here is to the likelihood of a convicted

criminal repeating his or her legal offense to society. In an
attempt to reach fairness in sentencing, a number of criminal
justice systems in the USA use an “assessment tool” called
COMPAS, (which stands for Correctional Offender Manage-
ment Profiling for Alternative Sanctions). This program is
provided (sold) by Northpointe, which changed its name to
“equivant” in 2017.

Here is a rationale of what equivant offers:
Whether through personalized dashboards, access to

offender risk and need assessments, criminal history snapshots,
calendar views, access to important documents, or the ability to
identify and mitigate potential bottlenecks, it all comes down to
having the right tools at the right time to make “data-smart
decisions”.[61]

There has been substantial debate in the US (and
elsewhere) on the judicial system being prejudiced against
black offenders.[62] Dressel and Farid recently looked at the
accuracy and fairness of COMPAS predictions of recidivism.
They concluded:

We have shown that commercial software that is widely
used to predict recidivism is no more accurate or fair than the
predictions of people with little to no criminal justice expertise
who responded to an online survey….When considering using
software such as COMPAS in making decisions that will
significantly affect the lives and well-being of criminal defend-
ants, it is valuable to ask whether we would put these decisions
in the hands of random people who respond to an online
survey because, in the end, the results from these two
approaches appear to be indistinguishable.[63]

Our astute friend, Paul B. Kantor, remarks here: “I think it
is fair to mention that our system of trial by jury is based on the
random selection of citizens to make life or death decisions
about other citizens.”
7. The arrival of AI on the world art scene

On October 25th, an AI-made portrait was sold for USD
432,500 by ChristieQs. The authors of the underlying algorithm
are 3 young French persons, working under the collective
name “Obvious”. One of the members of the group, Hugo
Caselles-Dupr8, is a Ph.D candidate in machine learning. The
process is fed by a set of 15,000 portraits, and may, of course,
produce an infinity of items.[64] There is a human selection
step, in the application of the algorithm (called Generative
Adversarial Networks). This is not the first creation of art by

algorithms. Aside from what the unexpected price (ChristieQs
estimate was $8,000 to $11,500) reached by this “portrait” says
about the modern art market, the comments about the event
are interesting.

Thus Richard Lloyd, the International Head of Depart-
ment at ChristieQs, is sure that this type of creation will
proliferate. And maybe everyone will be able to produce his
own art works by furnishing his set of preferred paintings to
the algorithm. This will be the end of “a privilege yesterday
reserved to the very rich people” (coming from the ChristieQs
staff, this invocation of economic democratization through
sophisticated technologies is rather amusing). However
important questions remain hanging, he says, “Who is the
author, the group or the algorithm? Is it necessary to pay
copyrights for reproduction of such works?”

The “Obvious” publicity stunt is actually the tip of an
iceberg—computer scientists, psychologists and artists have
been exploring the potential of computers “making art” for
decades, Ahmed Elgammal, a leading figure in the field and
director of Rutgers UniversityQs Art and AI lab, tells in
a recent article some of the fascinating history of the
enterprise, going back to a 1973 program of artist Harold
Cohen. Critical to recent work in the field is AICAN
(artificial intelligence adversarial network), “a program that
could be thought of as a nearly autonomous artist that has
learned existing styles and aesthetics and can generate
innovative images of its own.”[65]

8. The right to kill, an enemy or the bad driver
The connections between science and technology on one

hand, and military power on the other, are old, strong, and
well-documented. AI evidently is of direct and immediate use
for armies, both to gather information on the enemyQs
activities, and in the deployment on the potential battlefield
of sophisticated weapons. The US Defense Agencies set up in
2018 a Joint Artificial Intelligence Center, for integrating 600
AI projects.[66] Their budget is not disclosed, but individual
projects are in the ten to hundred million dollar range. The
contracted work is related to the social control of populations
as well as more direct military missions, such as autonomous
weapons. In battle, speed of decision is crucial, as illustrated
by this example: the ALPHA code, a new AI flight combat

Figure 11. The three principals in “Obvious,” the team which produces
art using artificial intelligence, stand next to one of their works, “Le
Comte de Belamy.”[65]
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system, consistently defeats a top US combat pilot. Col. Gene
Lee was quoted as saying:

“I was surprised at how aware and reactive it [ALPHA]
was. It seemed to be aware of my intentions and reacting
instantly to my changes in flight and my missile deployment. It
knew how to defeat the shot I was taking. It moved instantly
between defensive and offensive actions as needed.” [67]

The decision to fire and kill may eventually be delegated
to the AI-assisted fighter plane. Bill Geertz writes in an article
of “…the growing importance Beijing places on rapidly
building autonomous weapons—robotic arms capable of
thinking and acting at the speed of light.”[68] And General
John Allen speaks of a “hyperwar,”[69] free from human
decision. The Economist, in a recent article says “The line
between human and inhuman weapons is fuzzy, important and
breaking down.”[70]

AI offers a temptation to act quickly, in order to take
benefit of a supposedly massive technical superiority. This
supposed superiority is not necessarily real nor decisive (as
seen 40 years ago in Vietnam, and these days in Mali) but it
represents the potential acceleration of violent measures.

B8. Danger. Mortal

Issues of life and death should not be left to computers

In the last section, we have given a range of contemporary
applications of big data sets and simulation. These range from
innocently ludicrous (what an advertiser sees in the data
possibilities of skiing excursions) to downright scary (the
social scientistQs experiment to judge sexual preferences from
a few images. And presumably use them). Our newspapers
and media are just full of such frightening applications.
Zamyatin (“We”), Orwell (“Nineteen Eighty-four”) and
Aldous Huxley (“Brave New World”) saw it. One is led to
opposing perspectives on the future of human beings and AI/
simulation out there. It is there in a multitude of recent
movies, novels, and nonfiction books; we cannot match
a succinct and readable summary in Tad FriendQs essay on
“Superior Intelligence.”[71]

Let us face the strongest moral problem, the matter of life
or death. The moral problem of killing in time of war has
without doubt already been distanced in the past century by
the interposition of layers of technology between the initiator
of the action, and the victim. Massive aerial bombing of cities
in time of conflict is an example, from World War II on. The
problem paradoxically returns in the debate on killing drones,
employed in the “fight against terrorism”: must we give to the
drone the right to fire, or to wait for an order to fire, with the
risk that it will be destroyed? If we program it to kill, what will
be the acceptable error bar, the number of children that might
die, if the target be an important enemy leader?

The fascinating thing is that this question will return soon,
has returned, to all of us with the advent of AI-driven cars.
The governing algorithms will have to decide the carQs
behavior in situations where the survival of another car or
of pedestrians is pitted against damage for the AI-driven car
and its passengers. Can one imagine the number of cases to

consider, the weight given in the decision to the fault of the
possible victims (who are likely engaged in one or another
illegal action, since the automatically driven car obeys the
law), the lives of the outsiders and insiders, their number,
their ages? Not to speak of the legal responsibility, of the car
owner, the vehicleQs users, constructor, algorithm developer?
It will be worked out in the courts, to be sure, creating
employment for lawyers.

It is important, very important, that the designers of AI-
driven innovations think about ethics. We note recognition of
this obvious idea—so at Harvard a course on “Intelligent
Systems Design and Ethical Challenges,” introduced by
Barbara Grosz, has proven very popular, and with time
ethical reasoning has become embedded in a number of
computer science courses.[72]

In an excellent article on “Pros and Cons of Autonomous
Weapons Systems, Amitai Etzioni and Oren Etzioni summa-
rize the currents situation and arguments on both sides.
Remarkably, the pros include not only the expected military
but moral justifications:

“Several military experts and roboticists have argued that
autonomous weapons systems should not only be regarded as
morally acceptable but also that they would in fact be ethically
preferable to human fighters. For example, roboticist Ronald
C. Arkin believes autonomous robots in the future will be able
to act more ”humanely“ on the battlefield for a number of
reasons, including that they do not need to be programmed
with a self-preservation instinct, potentially eliminating the
need for a ”shoot-first, ask questions later“ attitude. The
judgments of autonomous weapons systems will not be clouded
by emotions such as fear or hysteria, and the systems will be
able to process much more incoming sensory information than
humans without discarding or distorting it to fit preconceived
notions. Finally, per Arkin, in teams comprised of human and
robot soldiers, the robots could be more relied upon to report
ethical infractions they observed than would a team of humans
who might close ranks”.[73]

Among other arguments in opposition:

Figure 12. A drone operator from the Mosul Brigade of the Iraqi
Special Operations Force 2 releases a drone during a military operation
to retake parts of Mosul from the Islamic State on Dec. 5, 2016.
Achilleas Zavallis-AFP/Getty Images.
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“In July 2015, an open letter … notes that AI has the
potential to benefit humanity, but that if a military AI arms race
ensues, AI’s reputation could be tarnished, and a public
backlash might curtail future benefits of AI. The letter has an
impressive list of signatories, including Elon Musk (inventor
and founder of Tesla), Steve Wozniak (cofounder of Apple),
physicist Stephen Hawking (University of Cambridge), and
Noam Chomsky (Massachusetts Institute of Technology),
among others…The open letter simply calls for ”a ban on
offensive autonomous weapons beyond meaningful human
control.“[74]

More importantly than the tarnishing the reputation of
AI, we do not think that the “moral neutrality” of machines
prevents any excess in the behavior of combatants at war.
Quite to the contrary, the machine has no chance to feel
compassion, to be hurt by the job it does, while soldiers may
(not without difficulty) object or refuse. And the soldier at
least has a chance to let the public know the human
consequences of the operation—no drone will do that.

The loss of life, the taking of a life, is certainly the heaviest
moral responsibility of human beings. Delegating this re-
sponsibility to algorithms built by some unknown code
designer may be comfortable for the user (reduced to his
position of consumer). But it is an ethical defeat of the society,
and of the rights and privileges of an individual, as it delegates
the most sacred decision to an algorithm.[75]

B9. Surveillance and Other Perturbations of the
Social Fabric

Costs to society

Turning to “lesser” issues, there is a growing concern, with
much public discussion, on government surveillance of
normal activities of its citizens. The clash here is between
privacy (whatQs left of it, seemingly well on the way out with
the advent of social media), and public security in the age of
terrorism. We tend to temper the fear by situating the
excesses elsewhere—it is the Chinese government that
perfects surveillance in the Xinjiang region.[76] But the
number of public video cameras per person (1 camera per
22 people) is large in London as well as Urumqi.

It is claimed by some that the direct contacts between
individuals that computers and social media offer, brings
about the self-assembly (to use a chemical concept) of
horizontal networks. And, with this, a new, enhanced chance
for democracy. Supporters of a positive role for the new
technologies evoke the (generally crushed) Arab Spring
revolutions, and demonstrations against oppression around
the world as examples. Others insist on the enormous
inequality created by the same technologies between the
central powers (political or economic) in society, and their
citizens, in collecting and disseminating information. The
above-evoked example of repression of the Uigur population
in western China supports the second thesis. There are
tremendous asymmetries of knowledge that the collection of
seemingly innocent data generates.[77]

Democracy has always been a fragile construction,
whether in its Athenian experiment[78] or in modern times
around the world. The impact of AI on this delicate structure,
the dream of personal and societal liberty, equality, and
comradeship it embodies, remains a major, we would say
political, issue.[79, 80]

One does not at all need to be a modern Luddite to see
that the enabled, shared data future will bring with it massive
perturbations in society that no one has thought through.
Human tasks of value (yes, there is value in weeding the
garden, and sewing on a button, as much as in writing
a scientific article) will be reduced. Inequality, and we mean
inequality in society, and between poor and rich countries
looks to us to be on the increase; and centralization of control
is readily abused by the forces of dictatorship and economic
exploitation.

B10. Environmental Cost

Uncertainties

There is conflicting evidence on whether the increased use
of computers and electronic devices in homes presents a major
drain of electricity in developed countries. One study
indicates a small perturbation on the scale of other uses in
normal life—so air conditioning and television use much
more power.[81] The electricity consumption by our tribe—
quantum mechanical calculations, biomolecular simulations,
other heavy computation—appears not to add much. Another
study (from Huawei) on global electricity usages of commu-
nication technology reaches a more pessimistic conclusion.[82]

It extrapolates to a best case 8%, to a worst case 51%
consumption of world electricity by communication technol-
ogy.

We note a precarious and curious perturbation in the
worldQs romance with cryptocurrencies—Bitcoin “mining”
has been using energy at the rate of a smaller developed
country.[83]

Not evaluated in the above is the social cost of computing
and communication (contributing to global heating), embod-
ied most directly in the manufacture of the devices that have
changed our lives. Rare earth element extraction—those
elements are needed for IT—turns out to be so polluting. On

Figure 13. Surveillance, by now antiquated. Original image from Politis
magazine, https://www.politis.fr/, used by permission.
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the positive side, we have seen a motion to renewable
resources in the generation of ever-so-portable electricity, the
life-blood of electronics. As solar and wind conversion into
electricity grow cheaper, there is in the US, the largest
consumer, little incentive to institute practices of conserving
energy. One may fear that more available electricity from
renewable resources will just lead to greater waste.

B11. Exponential Growth

A social uncertainty principle

Speaking of the future is risky, no less so of the future
impact of AI techniques. AI is seen by many as an empower-
ment, and the future of empowering techniques is supposed to
be evident, always increasing our well-being and choices. In
this domain extrapolations seem intuitively relevant, and the
satisfaction conferred by seeing MooreQs law regarding the
growth of computational capacities (a purely phenomeno-
logical law) is palpable,

Of course, exponential growth of a segment of any system
is a recipe for eventual catastrophe—one needs the other
pieces of our society, bakers, toilet-cleaners, even reviewers.

Technologies are embedded in societies, issue from them,
act on them, for better or worse, depending on factors which
are not technology-driven. AI may reduce if not suppress
many repetitive activities now pursued by moderately edu-
cated people. But the way the benefit of this liberation of time
will be used, shared or not, does not depend on the technology
itself. The inequalities between qualified and less-qualified
people, or between technology-mastering countries and
others, may become explosive and make the extrapolations
of the techno-prophets obsolete. The reality of what has
happened to the World Wide WebQs promise with respect to
ease and openness to communication, in the age of trolls, is
sobering. So is the abuse of social media. The impact of
uncontrolled climate changes, in countries and between
countries, may lead to major shocks and drive our societies
out of the envisioned optimistic trajectories.

We think it important to voice this “social uncertainty
principle” before speculating on the future of Science in age
of AI.

B12. Correlations and Causes

Back to some philosophy, the pitfall of hidden factors

Perhaps a good starting point here is ThomQs statement
again, “To predict is not to explain”, “Pr8dire n’est pas
expliquer.” His point is evident without being explicit: One
does not have an explanation or true understanding when
a prediction is only based on an empirically verified
correlation, in the absence of any explicit causal chain
between the stimulus and the issue, the cause(s) and their
consequences. No question about it, the reality of the practice
of science is that correlations, even sheer numerology, play
a role—firmly established correlations have frequently been

the first step to real scientific understanding. Examples
abound—the Rydberg series that Bohr explained is a good
one, as is the roughly contemporaneous introduction of
atomic number by Henry Moseley. And donQt forget the
Periodic Table, ante Bohr, or LewisQ pair-wise distribution of
electrons in bonds and lone pairs, before its quantum
mechanical formulation and the identification of spin.

So, correlations are just fine, provided that a causal link is
eventually sought, that explication is part of the design. What
has troubled us about most simulations of the modern kind,
from routine computational chemistry through machine
learning, is just that, that no cause is sought. We can
understand that the factors entering are surely complex, that
many competitive influences may create an ever-shifting
balance seemingly beyond human comprehension. But to
abdicate the search? To end a paper without hazarding an
explanation?

Modern information technologies offer access to huge
data sets, and, with that, the possibility to establish many new
and possibly unimagined correlations between variables.
Under the name of “Big Data”, this collective (and central-
ized) tool is frequently presented as the enabler of a forth-
coming revolution of knowledge. The reality is seen in the
story cited of TargetQs targeted sales to expectant mothers.
One cannot deny the interest of seeing unexpected correla-
tions, but science is not a collection of correlations, even of
firmly established, strong (in the sense of statistical validity)
ones. If these correlations are really surprising they should
advance to the status of an enigma. They should turn into an
intellectual challenge to our current understanding, call for an
explanation, find their place in a consistent chain of implica-
tions.

Simply from a pragmatic point of view, one may doubt
whether our individual lives and the political choices we make
can be, or should be, guided by just correlations. It is not only
inefficient but dangerous to act on a symptom that is a side-
effect. The Big Data program should not claim to be an
ideology-free political guide, nor a substitute for science.

A common noun, with two distinct meanings, appears in
politics and in science: namely the word “cause”. In the social
sphere, it is an ideal, a target—peaceful relations, justice and
freedom for instance. The search for causes, in the other sense
of the word, is the heart of scientific practice, the ultimate
pleasuring of the human mind, dare we say “soul”? Neither of
these meanings of cause can be reduced to the maximization
of efficiency.

There are well-known pitfalls in the search for causes,
aside from the overly seductive pull of simplicity, that flash of
OckhamQs razor in the sun. Or the Goldilocks hypothesis. Or
teleological explanations.

As scientists, we learn how to marshal real or theoretical
evidence to make sense. But we need to be aware of still
another dangerous shoal on the journey to Ithaka. One must
consider the possibility that an initially obscure underlying
cause may have as its consequences two quite independent
phenomena, the so-called prime symptom and another, often
tantalizingly close-seeming, issue. B may be correlated to C
because a hidden factor A induces both B and C along two
orthogonal chains of causality. In this case one may consider B
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as a “side-effect” or “side-symptom”. With the potential for
being identified (fallaciously) as a cause.[84] This is a well-
known problem in the social sciences: the percentage of racial
minorities in the jails of developed countries may be due to
social poverty and the inherited cultural handicaps of the
families, not to the color of their skin or racial inequalities.

We did not end up with a social misinterpretation of
causality by chance. For we think it is more from the social
sciences than the natural ones that this fallacy of reasoning,
which Aristotle knew, has come to be understood.

The pitfalls of attributing intelligence to procedures that
explicitly eschew considering causality are apparent to most.
We mentioned in part A a study that tries to look at how
docking or binding models that are successful in drug design
work. Here is what the authors say at the end of their paper, in
a small section headed “Thoughts for Practitioners:”

The recent machine learning revolution has led to great
excitement regarding the use of neural networks in chemistry.
Given a large dataset of molecules and quantitative measure-
ments of their properties, a neural network can learn/regress the
relationship between features of the molecules and their
measured properties. The resulting model can have the power
to predict properties of molecules in a held-out test set, and,
indeed, can be used to find other molecules with these
properties. Despite this promise, an abundance of caution is
warranted: It is dangerous to trust a model whose predictions
one does not understand. A serious issue with neural networks
is that, although a held-out test set may suggest that the model
has learned to predict perfectly, there is no guarantee that the
predictions are made for the right reason.[85]

B13. The Psychology of Human–Machine Inter-
action

So complicated that it needs a computer. And so can’t have an
explanation

We have already hinted at a psychological factor that
operates in the community where human–machine interac-
tions are necessary. Whatever program one writes, it is
inherently complex, with thousands of lines of code. It never
works the first time, giving nonsense, caught in loops. You
curse its unresponsive inhumanity, even as you know you have
yourself to blame for commanding the undoable. One is
fortunate enough to have checks, of symmetry, of zeros.

The laborious act of writing and debugging of a program,
tends to prejudice the simulator against the possibility of any
“explanation.” If it took all that work to write a program to
get a number, it surely cannot be an easy number to get. And
an order of magnitude estimate just wonQt do. The author of
a complex program is the least likely person to believe that
one could build a serviceable simpler model for the phenom-
enon. And while there is a way, perhaps a variety of ways, to
get the program to give a reproducible number, people have
not yet invented programming languages that build plain
language models.

Certainly the world of science is full of “just-so” stories,
teleological pseudoexplanations. One could imagine that the

simulator wants to defend him- or herself against that
universe. But Roald thinks there is more attitude-shaping at
root here, through the psychological consequences of the
process of extensive calculation, of programming, of simu-
lation.

B14. Isn’t it Time to Take Off Those Dark Glasses,
in Theoretical Chemistry?

An alternative, positive view, of simulation in theory as infinite
enhancement. The oracle

The authors of this paper have given too much room to
their own perspective on the dangers of unthinking simula-
tion, to understanding and society. So let Aspuru-Guzik,
Lindh and Reiher, three leading figures in our profession,
speak for the alternative view. They also look at the social
effects of AI, and see something very different from what we
point to above:

The connection between science and the current drivers for
society is deep and cannot be ignored. This century poses
several severe challenges that range from the rapid rise of
income inequality and the apparent cracks of the neoliberal
structure to the stresses on the environment due to industrial-
ization. The work of simulation scientists therefore is linked
directly or indirectly to this societal context. In particular, the
solutions to many of the challenges related to this century,
ranging from the discovery of novel materials for renewable
energy to that of environmentally friendly pesticides or next-
generation antibiotics, require tools to be developed by our
field.[86]

Their optimism on the fruits of simulation extends also to
a vision of chemical knowledge:

The new goal of theoretical chemistry should be that of
providing access to a chemical “oracle”: an AI environment
which can help humans solve problems, associated with the
fundamental chemical questions of the fourth industrial
revolution (clean energy, efficient drugs, smart materials, green

Figure 14. Taking off the dark glasses. Image by Vlue; reproduced by
permission from Shutterstock.
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chemistry, etc.), in a way such that the human cannot
distinguish between this and communicating with a human
expert.[87]

In another recent paper, A. O. von Lilienfeld also makes
a utilitarian and educational argument for AI techniques, as
follows:

…QML [Quantum Machine Learning] modeling capabil-
ities could then assist with experimental design questions
required to resolve many of the outstanding materials and
molecular design challenges, possibly alleviating some of
todayQs pressing problems due to lack of new antibiotics,
energy conversion and storage, water purification, or superior
catalysts, to name a few. Through early and appropriate
adaptation of chemistry education, reliable QML methods
could also help to attract next generation chemists through
cost-effective yet more versatile experimentation throughout
the curriculum, using modern immersive virtual reality equip-
ment.[88]

He supplements this with a philosophical case for valuing
QML:

According to another line of thought one could argue that
inductive reasoning is as applicable to scientific problems as
deductive reasoning, or possibly even more powerful since also
deductive methods rest on sets of approximations which were
inferred at some point. It should not be necessary to remark
that any new model, inductive or not, should be subjected to the
same amount of skepticism and fact checking as the deductive
approaches had to undergo. Since falsifiable predictions are
being generated, QML clearly meets Karl PopperQs criterion of
a scientific method. Richard FeynmanQs way of how physics is
done is also consistent with QML: “In general, we look for
a new law by the following process. First, we guess it. Then we
compute the consequences of the guess, to see … what it would
imply and then we compare the computation results to nature
… If it disagrees with experiment, itQs wrong”.[ref] More
provocatively, however, one could even argue that the current
state-of-the-art of solving the chemically relevant equations of
quantum and statistical mechanics is not much more insight-
ful.[88]

We disagree, naturally—we think the way theory has
come to be done is literally insightful. In the body of his paper
(not in these quotations), von Lilienfeld actually argues for
a reasonable conjoined approach of what we have called
theory and AI methods to theoretical problems in chemistry.

The rising tide of papers claiming to explain chemistry via
neural network or machine learning processes joins the
optimistic tone of the passages cited. We will return to
a reasoned argument against this view, then work our way to
a future that comes to peace with artificial intelligence.

B15. In Quest of Neutrality: the Ascetic (Ahuman)[89]

Dimension of Science

Maybe neutrality is a better word than bias. The return of the
observer in quantum mechanics

The hypemasters of the simulated chemical future brand
as biased what is taught in the undergraduate and graduate

courses across the world. Advocates of machine learning and
other methods of simulation claim that they hold the
(computerized) keys to the “unbiased” world in the offing.
If, less confrontationally, we label what they proffer as
neutrality—that one should not necessarily accept as truth
and wisdom the good stories that theories tell—then actually
the proponents of simulation are situated very much along the
path that science has taken. The desire for objectivity, the
wish to suppress the specificity, prejudices, and personality of
the researcher, appear to be intrinsic to the hope of
universality of the reliable knowledge we seek.

This is the ascetic dimension of the western science, that
the subject who reaches what he/she thinks to be the truth,
should aspire to disappear in the formulation of his/her
understanding. Scientistic nirvana! In this process, the side
story which tells the fortuitous circumstances through which
the scientist reached the shards of the truth granted to him or
her, may at best be viewed as a recounting of path-depend-
ence, or a pedagogical crutch—on the margin, no more than
“truth construction.”

It was not always this way; in the early days of the Royal
Society, direct first-person witness to a phenomenon, an
observation by an honest human being, was the testimony
valued.[90] A plague we owe to the subsequent triumph of the
neutralist construction of science is the takeover of scientific
language by a matching third person neutered discourse,
thought to be most consistent with eliminating the person.
Should we then be surprised that the appeal to neutrality,
voiced in such language, might be read by the public at large
as dehumanization of scientific knowledge? We have a prob-
lem.

There is an interesting turn in contemporary discussions of
the foundations of quantum mechanics, one that signals
a return of the individual. Gedanken and real experiments
have focused on questions of nonlocality and action at
a distance. ItQs not just animal lovers upset with the fate of
SchrçdingerQs cat—itQs thoughtful physicists disagreeing
about basic interpretations. As Steven Weinberg writes:[91]

“it is a bad sign that those physicists today who are most
comfortable with quantum mechanics do not agree with one
another about what it all means”

Weinberg is quite negative on the views of people who
bring the observer back into a central position in quantum
mechanics.[92] One of these, David Mermin, responds:

In explaining why he finds untenable what he calls “the
instrumentalist approach,” Weinberg gives voice to just such
a widespread prejudice: “Humans are brought into the laws of
nature at the most fundamental level.” Weinberg is not ready to
give up the goal of understanding the relation of humans to
nature by deducing it “from laws that make no explicit
reference to humans.” And so he endorses, with a touch of
pessimism, a long-term goal of seeking modifications of
quantum mechanics that “are not only speculative but also
vague.” He embraces this bleak prospect because he cannot
accept incorporating the relation between people and nature
into “what we suppose are natureQs fundamental laws.”[93]

In his recent book, Third Thoughts, Weinberg voices
a hope for a theory that would explain
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“what happens when people make measurements from
impersonal laws that apply to everything, without giving any
special status to people in these laws.”[94]

Mermin criticizes this view
“Here he unwittingly puts his finger on what I believe is the

actual source of the near-century of discomfort and disagree-
ment. There is an implicit assumption, shared by almost all
physicists, that the scientist must be separated from the science.
The usual appeals to measurement with classical outcomes, it
seems to me, are unsuccessful attempts to objectify and
impersonalize processes in which an individual scientist acts
on and is reacted upon by the world. The collapse of the
wavefunction after measurement represents nothing more than
the updating of that scientistQs expectations, based on his or her
experience of the worldQs response to the measurement.
Weinberg hopes to keep the scientist out of the laws of nature,
but our chronic failure to agree on the meaning of quantum
mechanics demonstrates the futility of his hope.”[95]

B16. The Dubious Attraction of Black Boxes

How theoretical chemistry went down the road; the dialogue
with numbers. Why people seem to want omnipotent black boxes

The new waves of machine learning and neural networks
propose for quantum chemistry an unbiased future of a black
box that is an oracle. Actually, even before the New Waves,
computational chemists were already well on the way to that
future. In an earlier section, we described, in some detail
particular to theoretical chemistry, how this came about.
Briefly: we wanted to solve SchrçdingerQs equation, but the
means to do so were lacking. So we invented wonderful
models (say those of Hgckel, or Pariser–Parr–Pople). In time,
the computer gave us the capability of doing substantially
more accurate calculations. Of course, we took that path; few
remembered the models.

The dialogue with numbers, pre-AI, has a way of drawing
you in. Modern computing offers the possibility of reducing as
much as possible the number of invoked, qualitative approx-
imations, or preliminary representations. There is no need to
call on intermediate knowledge or concepts, be they steric
effects, aromaticity and so on. All those fuzzy ideas that gave
us trouble in chemistry courses as undergraduates, for which
there was a never a simple yes or no answer. Scrap them! Just
apply Schrçdinger equation in the Born–Oppenheimer ap-
proximation, project it on the largest vectorial space of mono-
and N-electronic functions, and let the computer give you the
most reliable numbers. Then you feel sure, comfortable. In
time, many quantum chemists became adepts of black boxes.
That serve to avoid thinking.

The road to simulation in our field took only sixty years,
very much our lifetime. It did not wait for a well-thought-
through strategy or philosophical considerations, but took
a convoluted track as the computing power available to
quantum chemists grew in its unpredictable way—from
mechanical calculators used by James and Coolidge to the
cluster arrays and graphic processing units (GPUs) in
common use today.

Actually, it is not so easy to root out thinking in
a theoretical science. What transpired was more like the first
steps in a dance—periods of sheer manipulation of numbers,
facilitated by ever-increasing computer speed and architec-
ture, alternating with the working through of ideas that
simplify, categorize, interpret. Let us describe one such
sequence, perforce in technical language.

Even with the potential of carrying through the heaviest
calculations, some people keep thinking of other ways to do it.
We might, for instance, identify a subset of mono-electronic
functions and a reduced number of electrons which play the
leading role in the phenomenon we are considering, which
defines an entry into the problem, and which we call the
“Active Space.” There is real physics behind the singling out
of such a reduction.

The AI aficionado feels uncomfortable with this step. In
the case at hand, instead of defining an active space, and
carrying out a level of configuration interaction in it, the aim
would be to conceive and implement a code which bypasses
the “entrance door” of the active space concept, and apply
a black box which will… do better, either avoid the
determination of an active space, or define it through an
optimization process, supposed to be neutral and deliver
a unique choice. Actually, unthinking optimizations may lead
to bad surprises: an example is provided by cutting the triple
bond of N2, which, in principle, requires only 6 active
Molecular Orbitals (MOs). If, on the road to improvement,
one chooses 10 active MOs, introducing additional MOs
which do not have the same physical role at short and large
interatomic distances, strange potential energy curves re-
sult.[96]

Why do people want black boxes? ItQs not just in
chemistry that we seek them—one can also point to politics
and our response to men in white coats. The phenomenon—
longing for someone who understands, for a simple solution,
for the healing potion—is ultimately psychological. The world
out there is multivalent, if not messy. We desperately desire
simplicity and certainty. And politicians give it to us every
election.

In our context, of chemistry and computations, adopting
confidence in black boxes leads us back to SearleQs room. The

Figure 15. From an installation by Danae Stratou in Athens, 2012: www.
danaestratou.com/site/portfolio/its-time-to-open-the-black-boxes/.
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black box is newer, fancier—it is fashionable, embedded in
the computer. It caters to a simplistic view of science as
omnipotent knowledge, knowledge that is neutral and inde-
pendent of the observer. The black box generally does what it
was designed to do very, very well. And knows no physics or
chemistry. Or knows all that a chemist or physicist might want
to know, depending on your point of view.

B17. Numbers and Images

The special place of images in theoretical chemistry. And their
possible abuse

We want to take a digression next, on pictorial depictions
of orbitals and densities. The connection to AI techniques is
loose here, but computers have changed the way these images
are used, and how theory interacts with them.

A paradoxical effect of the easy access to computers
(inherently digital) is the reign of images in scientific
communication, at least in theoretical chemistry. A primary
consequence of the ITrevolution has been representational—
programs such as ChemDraw[97] have allowed even the novice
to draw 2-dimensional molecular structures perfectly. But the
real revolution has been in the 3-dimensional depiction of
complex molecules This luxury (or so it seems for those of us
brought up in another time, when faithful representation was
laborious) is especially evident for complex biochemical
molecules. Wonderful software allows the schematization of
ribbons and strings in peptides and nucleotides (Figure 16
left), aiding us in the visualization of the biomolecular
architectures, enabling us to guess the kind of collective
movements molecules may achieve in biochemical processes.

Chemistry is as close as a science gets to Roland BarthesQ
“An Empire of Signs.”[98, 99]

Moving closer to theoretical chemistry, a popular ten-
dency today is to draw electron densities or molecular orbital
amplitudes, with great precision. The calculation at each point

in space of, say, the spin density of a free radical, requires the
computation of the amplitudes of all the atomic orbitals, the
coefficients of these AOs in the molecular orbitals, and the
coefficients of the multitude of determinants involving these
MOs. This is obviously fodder for the computer, unfazed by
the amount of information required. The way to display the
immense information calculated for wavefunctions, with some
semblance of three-dimensionality, is by drawing an isosur-
face, connecting points of the same value of whatever is being
plotted. The outcome: a wonderful plasticky image of
deformed balloons of two colors (indicating the phase of the
amplitude).[100] The rendering, miracle of computer graphics,
is certainly useful in establishing three-dimensionality. But
sometimes the shininess seems like aesthetic affectation (as
will be seen in time, we have nothing against art), perhaps
even with erotic connotations—orbitals as lip gloss.

In the old days one could also have done this, albeit much,
much more laboriously. Also one could—and often did—take
an information-reducing step along the way, and draw (some-
times using a template in the shape of an orbital) the major
contributing atomic orbital(s). It may happen that the
sophisticated information, once reduced to its core, confirms
the crudest picture. As an example let us call up the
distribution of the unpaired electron in conjugated free
radicals, specifically for benzyl C7H7 = (CH)5CH2. Predicted
by the topological Hgckel Hamiltonian, they may be obtained
directly without any matrix diagonalization, as 4/7 on the
external carbon and 1/7 on three of the ring atoms. Those
predicted from the variational Hartree–Fock calculation are
very different, while a sophisticated treatment (full p

CASSCF) returns to the Hgckel estimate.[101] And one may
understand why the Hartree -Fock approximation is in error,
giving full privilege to the leading configuration (the left
valence structure in Figure 17) at the expense of the other
three.

One lost information in the old days, and was in danger of
losing some essence. But one gained focus, and portability in
the structures. So that an explanation, in terms of these
simplified MOs, could be sketched for others, thereby trans-
forming numbers into an explanation, maybe even a theory.
What we have today is a graphically rich 3D rendering of the
contour for one precise (and arbitrary, in its chosen value, and
in its dependence on the underlying methodology) value of
the electron density. Which can only be admired, but you
cannot introduce it in a reasoning process. Worse. One gets
the feeling in many papers that a button generating the graph
has been pushed too many times. As if more such unin-
formative orbitals would impress!

Figure 16. A ribbon representation of myoglobin, and some of the
molecular orbitals of a dimethylpentatetraene. The orbitals at right
show the inherent helicity of the MOs of this molecule:“Coarctate and
Mçbius—The Helical Orbitals of Allene and Other Cumulenes,” M. H.
Garner, R. Hoffmann, S. Rettrup, G. C. Solomon, ACS Cent. Sci. 2018,
4, 688–700.

Figure 17. Spin distribution and four resonance structures for the
benzyl radical.
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We have before us a situation where the “numerism”
made possible by the computerQs power effectively kills the
numbers, in service of supposedly richer pictures. Absolutely
nothing has been gained in the process. The numbers are lost,
and understanding does not replace them.

To return to our main point: The pretty orbital image, in
the service of more faithful representation, in fact kills the
Scheme, whether it is the idealized orbital lobes Roald has
used, or the Feynman diagrams with which Jean-Paul thinks
through the electron correlation problem. These schematic
visualizations do not require the assistance of a computer, but
help you to build and transmit in an elementary pictorial
manner an interpretation. Even as they are technically
deficient.

B18. A Science of Many Tongues

The polyglot nature of quantum chemistry; room for many ways
to approach a problem

We may wonder whether the search for the omniscient
black box has an element of aversion to variety, to there being
many doors in to reliable knowledge. Quantum Chemistry
today speaks several languages, it may speak in terms of
atomic orbitals, as does orthodox Valence Bond theory, or
think about whether we might give those orbitals little tails
(so as to avoid ionic structures).[102] It also speaks the tongues
of localized molecular orbitals, and of canonical symmetry-
adapted delocalized MOs (see Figure 18). Quantum chemis-
try is rich in dialects, expressing the same phenomenon in
different idioms. And it gives trouble to the person who fails
to learn the underlying equivalence of the dialects.

Or to one who just has an aversion to the fact that
a description claiming to be scientific is not unique. This is
a variant of the objection that Primo Levi, in a rare moment of
naivet8 at one point in his education, voices: “Did chemistry
theorems exist? No.”[103]

One or another of these dialects may be more suited to
a given problem, much as seemingly distinct wave and particle
pictures of light (that give a modern physicist no trouble at
all). So symmetry-adapted MOs for instance enable one to

formulate most economically the Woodward–Hoffmann rules
for the stereospecificity of electrocyclizations, compared to
a VB approach. But describing the dynamics of a molecular
excitation in a crystal, or the way an electric field affects
a chemical reaction, might come more easily in VB language.
Some properties may be equally well described from different
entry points, for instance the geometries of conjugated
hydrocarbons from Hgckel theory (which ignores the electron
-electron repulsion), and from a Heisenberg model (which
assume this repulsion to be dominant and reduces the
electrons to their spins.) The different languages actually
serve a positive function—they give us new ways of thinking.

LetQs put it another way, in the context of the comple-
mentarity principle.[104] Two or more views of a phenomenon
are not a sign of weakness for a science. Physicists were not set
back by the particle-wave duality. Or the effectiveness of both
matrix and wave mechanics. A unique representation is never
attainable. And the dream of one separated from the “bias” of
its human shapers is just that… a dream. This is going to be
the fun of meeting alien civilizations—they are certain to see
and express the same chemical and physical reality differently.

The polyglot nature of Quantum Chemistry is to us hardly
a weakness, or a sign of immaturity, or something to cure. We
view the existence of alternative doors as a spur to intellectual
creativity, a prospect of deeper understanding, a source of
pleasure for the practitioner and… possibly, a passage to
beauty.

B19. Comfort

Providing a way out of black boxes

It is clear that we do not follow the colleagues who,
proposing a black-box algorithm to define a Complete Active
Space (which may be useful in some cases), speaks of the
choice of this space as featuring an element of ambiguity,
quoting others as the task being a challenge, and highly
subjective. The choice is painted in negative hues.[105]

ThatQs not how it feels to us. The concept that appeals to us
is that of comfort. From its early conceptions and uses,
Technique (and thus Science, behind most of modern
technological changes) has been employed to gain better
efficiency, security and comfort. Comfort is not just an
armchair in front of a large screen; it is also the amelioration
of human pain, which has to be, and is, a prime motive force of
science. Probably theoretical chemists, of either our old kind
or machine learning adepts, have not done so well here. The
comfort we have sought and will describe in detail resides in
the emotion of satisfaction—yes, call it joy—of grasping
understanding.[106]

The quest for comfort, physical and mental, is recogniz-
able in all historical advances of technology, including modern
AI. It might seem that the black-box decision-making we tilt
against also represents comfort. Bah, the comfort to not think.
The calling on previous knowledge on similar systems may be
a mental effort, but this effort is also a pleasure: The
contentment of a journey (full of detours) through the
elements of our knowledge, the byways of unexpected

Figure 18. Localized and delocalized perspectives on the molecular
orbitals of methane. The graphic is assembled by Philippe Hiberty.
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connections gleaned, the pleasure of constructing a risky
prediction, even the enlivening satisfaction of a challenge, to
be confirmed or rejected. Even if predictive tools can be
automated.

Comfort is not easy to achieve. First, if one admits the
importance of its mental and emotional aspect, it is clear that
modern science and technology may not be doing so well. Life
is in a myriad ways better, longer. But depression and anxiety
mark our society. For which pharmacological fixes are sought.

Second, AI clearly raises the comfort level—be it in the
ease of finding your way through a maze of one-way streets
with GPS (the Global Positioning System), or the Shazam
App that identifies remarkably well an obscure rendition of
a snippet of a song.[107] Yet so many other uses, some of which
we have listed, serve less worthy impulses. We admit there is
comfort in not worrying whether one has reached the global
minimum in the structure of a molecule.

Even as we seek physical comforts for this world, and not
only for humans but the biosphere, we need to save the basic
ludic and aesthetic aspects of science.[108] Playing with models,
allowing the choice of a representation among several, trying
out diverse explanations—these are the elements of the great
game on which we have embarked.

B20. Looking Ahead

Numerism and a search for understanding can work
harmoniously together. Yet keep an eye on hybrids

A critic of our tilting with the windmills inside “artificial
intelligence” machinery might advise us to relax, and not only
come to peace with, but make use of AI’s empowering, often
transformative nature. HavenQt we learned to get chemistry
out of complicated quantum mechanical calculations? To use
another metaphor, we are already in the skin, so-to-speak of
elaborate computations—why not welcome the world they
open for us?

As an example of what computational chemistry can do
today is provided by the detailed theoretical analysis of some
enzymatic reactions. Quantum mechanical treatment of the
whole enzyme is impossible (and may not be productive).
Intelligent strategies have been developed by the community
to identify the core biochemical reaction, to treat a sizable
model at the highest accuracy, the steric and electrostatic
effects of the enzymatic environment perhaps simulated in
a classical mode. One takes advantage of the structural
information from crystallography, of course, but also that
from a variety of spectroscopies.

Theory is then able to identify active sites, to follow the
steps of the reactions, and even their dynamics. Once the
reliability of the calculations is established, one can begin to
believe the fleeting intermediates theory proposes, and design
experiments to stabilize or intercept them. ItQs a beautiful
playground. Among the impressive work in the field is the
study of the MPnS enzyme by S. Shaik and co-workers,[109] of
O2 in photosystem II, by P.E.M. Siegbahn[110] and the group of
F. Neese and co-workers,[111] and the work of the K.

Yoshizawa group on dioxygen activation and methane
hydroxylation.[112]

Notice how far these studies are from “brute force”
approaches. In them enters much knowledge of biochemistry,
the weighing of sometimes contradictory experimental re-
sults, and the design of an appropriate computational strategy.
This is real science. Even as we worry about what the tools of
AI will do the future, and to the grand enterprise of
understanding on which our Greek, Arab and Chinese
forefathers embarked, we revel in what we (or at least our
students, or given our age, their students) can do.

And… chess did not end when Deep Blue defeated Garry
Kasparov in 1987. Kasparov himself, a thoughtful observer of
computers and humans,[113] invented “Advanced Chess,”
which came to be called “cyborg” or “centaur” chess, in
which the competition was between human–machine teams,
the human participants using whatever AI assistance de-
sired.[114] The intent was to learn, both of the game, and of the
strategies. The results are impressive.[115]

There is now a name for the field of activity by human–
machine teams, “multi-agent intelligence research.”[116] And
the military is naturally interested. Here is a quote from a US
Defense Dept agency soliciting proposals in the area:

The inability of artificial intelligence (AI) to represent and
model human partners is the single biggest challenge prevent-
ing effective human–machine teaming today. Current AI agents
are able to respond to commands and follow through on
instructions that are within their training, but are unable to
understand intentions, expectations, emotions, and other as-
pects of social intelligence that are inherent to their human
counterparts. This lack of understanding stymies efforts to
create safe, efficient, and productive human–machine collab-
oration.[117]

This military-oriented call for research makes it sound like
much work remains. Maybe we should add “Fortunately.” For
we enter a danger zone, that of machine–man hybridization.
The line from Icarus to post-humanism[118] is involuted, and
explored in imaginative writing more than by scientists. It has
never been that far from hybridization to hubris, even as the
wordsQ etymologies (roots of the former in the interbreeding
of species, the latter in the Greek ub1i&, excessiveness) differ.

It seems to us that in theoretical chemistry we have
already found that hybrid strategy, a natural way, as the
biomolecular calculations cited above show.

Onward

Does our position on simulation vs understanding seem
Quixotian to the reader? They should know Jean-Paul lives in
a house built by a miller, close to its two-century-old windmill.

One has to find a place between a mauvais coucheur ~
kvetch—and the eternal optimist crossed with a hypemaster.
In-between is good place to be, because at the extremes the
capacity to change is severely restricted. And change there
will be, in this most Heraclitean of sciences.

In the third part of our Essay we will sketch our
conception of that in-between-land, where theory, under-
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standing, and simulation coexist. Where chemists remain
important.
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