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Abstract: The electronic structure of an unusual LiSn phase (computed using band structure calculations in
the framework of the extended Hu¨ckel tight binding theory) is the starting point for a general analysis of the
variation of electron-rich multicenter bonding across a period. The LiSn crystal structure of Mu¨ller and Scha¨fer
in question contains 2D slabs of Sn atoms arranged as microscopic stairs and intercalated by Li atoms.
Discrepancies between an electron count derived from a recent extension of the Zintl-Klemm rules to electron-
rich systems (52/3 electrons) and the experimental one (5 electrons for the Sn sublattice) and other failures of
chemical “common sense” emerge in the analysis. The key for interpretation of a series of puzzling results
was found in the comparative analysis of the Sn net with other main group element hypervalent slabs. Increasing
s,p-mixing as one moves from the right to the left side of the same row of the periodic table is responsible for
these effects. The result is that a lower electron count is found in the Sn slabs relative to the one expected
from the extended Zintl-Klemm theory. The effect should also occur in discrete molecules. We also showed
that the Li atoms have a role in the determination of the final structure, not only because of their small size
but also through the degree of the electron transfer to the Sn sublattice.

Introduction

The lithium-tin system is a model for the electrochemically
active interface of lithium ion batteries, now one of the most
important rechargeable power sources for portable electronic
devices.1 Lithium and tin are known to form several binary
compounds,2 some of which have unusual, unexpected struc-
tures. Consider the (1:1) LiSn phase. Assuming Li+, the tin
atoms carry a formal negative charge and are then isoelectronic
with group V elements. Following the Zintl-Klemm concept,3

a three-connected cluster or three-connected network, common
for group V elements, is the type of structure expected.

But neitherof the two reported LiSn structures4 is a three-
connected one. The following shows a drawing of the two
structures (the lithium atoms are omitted for the sake of clarity).

The left one4a is isotypic to high-pressure LiGe;5 it contains
eight-membered rings with two different types of Sn atoms. One
atom has a pseudotetrahedral environment and the other has a

distorted square-planar environment with two short and two long
distances. The bonding in this structure was analyzed by one
of us in a previous paper.6

The other LiSn structure4b consists of a series of infinite 2D
tin layers intercalated by the lithium atoms. The distance
between two layers of tin atoms is 4.17 Å. The long interslab
separation suggests that there is little covalent bonding between
the two layers. As seen in1, each tin slab is like a microscopic
stair with a tread of 6.32 Å and a riser of 3 Å. Structure2 labels

the atoms and shows the interatomic distance in a layer. Two
lines of Sn atoms are spaced 3.18 Å apart.
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There are two kinds of Sn atoms in each slab. One (Snsq) is
in a quasi-square-planar environment; the other (Snbu) in a
“butterfly” or bent environment (one Sn-Sn-Sn angle is 105°).
The distance between the planar and the butterfly Sn atoms is
3.16 Å and that between two butterfly Sn atoms is 2.99 Å. For
calibration, a normal Sn-Sn single bond distance is around 2.8
Å; distances around 3.1 Å are quite common in binary and
ternary Sn phases and are indicative of Sn-Sn electron-rich
bonds.7 In this paper, we examine the electronic structure of
this second LiSn phase in order to understand better the bonding
in it. What emerges is not just a picture of the bonding, but an
important insight into the role of s,p mixing in determing
structure as one moves across a period.

The Expected “Magic” Electron Count of the 2D Slab in
LiSn. In a previous paper,7 two of us developed an extension
of the classical Zintl-Klemm electron counting rules3 for
electron-rich, hypervalent phases. In the remainder of the paper,
we will call this electron counting algorithm the “extended Zintl-
Klemm” count. Let us see where this type picture of the LiSn
crystal takes us. The approach we choose is to start from the
3D crystal and “retrotheoretically” decompose it to move step
by step to a molecular compound, a 0D object. Then the full
structure is reassembled, reversing the process. While this
Aufbaumay seem tedious, it is, we think, an informative way
of connecting different pieces of the chemical universe. The
picture in Figure 1 describes the later steps of that process.

First, we eliminate the lithium cations, leaving a 3D lattice
of Sn1- slabs. We take this Sn sublattice apart into 2D slabs
(assuming little interaction between slabs; this will be tested).
There are several ways to subdivide the 2D slab. In Figure 1,

we show two of them. In the first case, we cut the slab in the
direction of “climbing of the stair;” in the second case, we break
the stair into treads. These two approaches, each leading to 1D
structures, will eventually provide us different and complemen-
tary information on the electronic structure of the 2D sheets.

Let’s call these 1D structures a “1D stair” and a “1D tread”.
How can we decompose them further? Each structure can be
built from a triatomic main group unit by “end-on” or
“sideways” stacking, indicated toward the bottom of Figure 1.

Let us now reverse this procedure, in anAufbau of the
complete slab. The aim is to see what is the optimum electron
count expected. We begin with the linear triatomic. A model is
I3

-, XeF2, or Te3
4-; the Sn analogue would be Sn3

10-. The
qualitative electronic structure of such a system is shown in3.

Assuming little s,p mixing for the moment7 (we will have to
return to this), each atom has 6 electrons in s and py, pz orbitals.
The remaining three px orbitals form a classical hypervalent
three-center electron-rich orbital system, occupied by 4 electrons.
The net electron count is 18+ 4 ) 22 electrons per 3 atoms.

Imagine sideways coupling of such units to form a 1D tread
structure4. When py lone pairs are fully occupied (22 electrons

per 3 atoms), one should only get repulsion, indicated schemati-
cally by the lone pairs impacting each other in4. To achieve
optimum (electron-rich) bonding alongy, one needs to oxidize
each py lone pair by 1 electron.8 This gets us to 19 electrons
per 3 atoms.

The assembly of the 2D slab involves covalent bond
formation roughly alongz, as shown in5. Again keeping the

electron count at 19 would lead to repulsion of corresponding
lone pairs. Oxidation by 1 electron at each “terminal” atom of
a triatomic building block would give good bonding. The

(7) Papoian, G.; Hoffmann, R.Angew. Chem., Int. Ed.2000, 39, 2408. (8) Papoian, G.; Hoffmann R.J. Solid State Chem.1998, 139, 8.

Figure 1. “Retrotheoretically” decomposing the 2D slab. Two possible
ways of moving back to the 0D triatomic molecule are shown. On the
left side we cut the 2D stair slab in the direction of “climbing of the
stair”, on the right side we break the stair into treads. Both of the 1D
stair and 1D tread are after that decomposed into 0D triatomic
molecules.

2318 J. Am. Chem. Soc., Vol. 123, No. 10, 2001 Ienco et al.



resultant electron count is (19- 2) ) 17, or 52/3 electrons per
main group atom in order to form new bonds.

Now let us assemble the slab in the other way. The formation
of a 1D stair from a 0D triatomic is shown in6. The optimum

electron count for the 1D stair is for 22- 2 ) 20 electrons,
oxidizing the system by 1 electron at each terminal atom.

The 2D slab is reassembled by bringing these 1D stairs
together alongy, as shown in7. This again encounters repulsion

unless there is oxidation by 1 electron ateachcenter (from px),
leading to an electron count of 20- 3 )17 per 3 atoms or
again 52/3 per main group atom.

Either way, (it would have been a surprise if the outcome
had been different) the extended or electron-rich Zintl-Klemm
counting protocol leads to 52/3 electrons per tin, which is in
excess of the actual 5 electrons the structure possesses in LiSn.
We will return to this point below; it will give us important
insight into a new aspect of electron-rich multicenter bonding
in extended structures.

There is one more point to make relevant to the extended
Zintl-Klemm count of 52/3 electrons per atom. This is that the
Aufbauleads to a distinction in electron count at the center of
the tread (the square planar atom) and at the ends of the tread
(the butterfly atom). The analysis is shown schematically in8;

in the triatomic, the electron distribution is roughly as in8a;
three-center electron-rich bonding, in a Hu¨ckel model, leads to
accumulation of a 0.5 e- at the end atoms.9 This follows from
the orbitals in 3; the lowest MO distributes its electrons
approximately 0.5, 1.0, 0.5 along the triatomic, the HOMO 1.0,
0.0, 1.0.

Subsequent oxidation by 1 electron at the ends of the
triatomics during theAufbau, and at every atom by 1 electron,

makes the “central” square atom more negative (for a 52/3
average electron count). This is shown in8b, where the numbers
are the approximate number of electrons not in the triatomic
molecule, but in the triatomic unit of the 2D stair. We can also
say that the electron excess at the central atom is likely to be in
the pz orbital. Indeed, none of the oxidation steps (which we
detailed above) in the construction of more complex structures
from a 0D triatomic involves this orbital.

The two constructions we chose are not unique. One may
assemble these slabs in still other wayssin a separate paper
dealing with X5 structures we show still another way.10

We have thus reached an interesting pointsthe extended
Zintl-Klemm picture clearly leads us (in several ways) to expect
52/3 electrons per Sn. But the experimentally observed Sn- slabs
have an electron count of 5. Let us look at the electronic
structure of the stepped Sn- slabs and see if we can reconcile
these two viewpoints.

Band Structure of the 2D Sn slab of LiSn.We model the
sheet with all Sn-Sn distances equal to 3.17 Å (an average of
the Sn-Sn distances in the tread of observed structure) and all
step angles at 105°. The assumption of equal bond lengths allows
us to compare the strength of the distinct bonds in the structures
if the overlap population of a given bond is then large or small
(despite the fact the underlying bond length is the same), that
is a hint of a bonding proclivity inherent in the structure. The
band structure of the 2D slab is reported in Figure 2. The Fermi
level (εF) for both 5 and 52/3 electron counts is shown. We note
first that the 2D net appears in the calculations to be metallic,
εF lying in a region of moderate DOS. The net would also be
metallic for the hypothetical 52/3 electron count.

What is the nature of the states near the Fermi level and the
charge distribution in the sheet? The square planar atom in fact
is more negative; the Mulliken charges are Snbu (-0.86), Snsq

(-1.28). For the observed electron count of 5 the population
of pz of Snsq is computed as 1.82.

Let us examine the bonding in the sheet, as gauged by the
integrated crystal orbital overlap population (COOP) for the Sn-
Sn bond, reported in9. For reference, the Sn-Sn overlap
population (OP) at a distance of 3.17 Å for a singly bonded
H3Sn-SnH3 molecular model with the same Sn-Sn distance
is 0.62.

(9) Lipscomb, W. N.Boron Hydrides; W.A. Benjamin, Inc.: New York
Amsterdam, 1963; pp 30-32. (10) Ienco, A.; Hoffmann, R., unpublished results.

Figure 2. Band structure of the stair2 (left) and contribution of the pz
orbital of the Snsq atom to the total DOS (right). The figure also shows
the Fermi level for the experimental electron count of 5 electrons/atom
and for the extended Zintl-Klemm electron count of 52/3 electrons/
atom.
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In the case of 5 electrons per Sn, the highest value of the
COOP (0.60, by far the largest in the structure) corresponds to
the experimentally shortest (2.99 Å) Sn-Sn distance, the one
for the interstep Snbu-Snbu" bond. Recall that in our model all
Sn-Sn bond lengths are equal, so differences as marked as the
ones observed are indicators of real differentials in bonding.
That magnitude of the COOP is also quite consistent with the
value of the OP for the single Sn-Sn bond model. The three
other symmetry-distinct interactions have lower OPs, consistent
with the existence of hypervalent bonding between the Sn atoms.

We now come to a crucial point; If the electron count were
52/3, the bonding would beVerydifferent. Such an electron count
(see9 right) leads to an almost zero OP (-0.01) between the
butterfly atoms, indicative of essentially no interaction. If the
electron count were 52/3, the slab would better described as a
series of noninteracting treads (as in10). A breakdown of the

COOP (not shown here) shows that the calculated repulsion
derives mainly from the pz orbital combination of the Snbu atoms.

While the near-zero Snbu-Snbu" COOP helps us to understand
why the system at hand does not take up (through variation of
stoichiometry) the 52/3 electron count, it is important, we feel,
to understand the origin of the effect better. To explore this, it
is instructive to take a look at other hypervalent slabs.

Hypervalent Slabs of Different Geometry, and for Dif-
ferent Elements. Let us consider the square planar and the
zigzag slab shown in11. As pointed out in other work,7 the

preferred electron count for the square planar net is 6 electrons
per atom and for the “zigzag” net is 5. To allow a comparison
with the net studied early in this paper, the Sn-Sn distances in
the calculation are fixed to 3.17 Å and the zigzag angle to 105°.

The band structure of the square planar slab is reported in
Figure 3. Fermi levels for 5 and 6 electrons are shown. The net
is metallic. The value of the OP for the Sn-Sn bond is 0.45
for an electron count of 5 electrons, while it is 0.20 for 6
electrons. The latter value indicates a rather weak interaction,
compared with the value for the hypervalent linkage in the stair
(see9). The COOP diagram for the Sn-Sn bonds (Figure 3)
reveals that the Sn-Sn repulsion for the electron count of 6
derives from orbital combinations with energy higher than-7.5
eV. In this region of energy, one is occupying levels which are
strongly antibonding.

The zigzag slab is also metallic. For an electron count of 5
electrons, the OP for the single bond Sn-Sn′ is 0.53, while for
the hypervalent bond Sn-Sn" it is 0.28. The comparison of the
values of the OP of the zigzag slab with the ones of the 2D
stair (see9) shows that the electron-rich linkages (Sn-Sn") in
the zigzag slab are weaker than in the stair slab (Snsq-Snsq′
and Snbu-Snbu′).

In Figure 4, the COOP curves for the Sn-Sn′ single bond
and the Sn-Sn" hypervalent bond are reported. Just as in the
case of the stair, the addition of electrons to the sheet increases
the strength of the hypervalent linkage, but reduces markedly
the population of the single bond. In analogy with the stair,
chemical reduction of the net leads to separate linear chains of
Sn atoms.

We also want to compare the total energy of the three
networks (square planar, zigzag, stair) for the electron count of
5 per Sn atom. The square planar net is calculated 0.07 eV per
Sn atom more stable than the stair and 0.36 eV more stable
than the zigzag. This is in disagreement with the observed
structure; either the computational method is inadequate or the
countercation role is significant in determining the structure.

So far we have a discouraging set of negative results. We
begin to obtain some insight into the problem from a comparison
of the total energy difference of the slabs for other main group
elements of the same row as Sn (In, Sb, Te). In this context, it
is also instructive to explore not only the electron count of 5
but also a larger range of electron counts. In the calculations
we used a distance of 3.25 Å for In (as in the structure of
elemental In), while for Sb and Te we reduce the distances to
3.14 and 3.11 Å, respectively, to take into account the smaller
size of these two atoms relative to the Sn atom.

Figure 3. Band structure of the square planar net11 (left), and COOP
curve for the Sn-Sn interaction (right). The Fermi level for electron
counts of 5 and 6 is shown.
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Figure 5 reports the total energy of the Sn, Sb, and Te slabs
(the In results are not shown in the figure; they are much like
Sn) for an electron count of 4-6. The square planar slab
geometry is the arbitrary zero reference, shown by a straight
line. The curves each contain a region of high electron counts
where the zigzag and stair slabs are less stable than the square
planar one and a region of low electron counts where these are
preferred. The crossing point of the stair total energy curve with
the square planar curve changes from 4.5 in the indium and tin

cases to a little bit more than 5.5 in the tellurium one. The stair
itself is most stable only in a small range of electron counts.
This range increases from In to the Te. It appears that as we
move toward the right side of the periodic table, the extended
Zintl-Klemm-type picture works better. From Figure 5, it is
also clear that a 5-electron slab of Sb has more chances to take
on a stair conformation, while a slab of Te prefers the zigzag
geometry.

When we look at the Te stair net in more detail (for an
electron count of 52/3), we find an important clue. The COOP
for the Te-Te bonds (shown in12) reveals that all the

interactions are positive! Notice that the COOP of the Tebu-
Tebu′′ bond ispositiVe (0.36), whereas the Snbu-Snbu′′ COOP
for that same electron count was near zero (see9). Obviously
there is a big difference between Sn2- and Te, even if the
electron count in the structures formed by both elements is the
same. This difference we need to understand.

We might note here what is known about Sn square planar
slabs in other phases. A detailed analysis for the fourth group
element square sheets was presented by two of us as part of a
comprehensive study of multicenter electron-rich bonding in
extended systems.7 There are a good number of such phases:
i.e., MIVX2 (M ) Zr, Ti, Hf, U, Th; X ) Si, Ge, Sn), RESn2,
RECu2Sn2 (RE ) rare earth), etc. For Sn, the electron count
can vary between 5 and 6 electrons per atoms. When the electron
count is lower than 6, the square sheets appear to turn on
interactions with other surrounding electron-rich structural motifs
and/or isolated atoms. For details, the reader is referred to the
Papoian and Hoffmann paper.7

Figure 5 is instructive in another way, in that it suggests what
sheet deformations are likely for different electron counts.
Consider LinSn, with a potentially variable Li content. If the
Sn sublattice forms sheets (it does not have to), a square sheet
should be preferred forn > 1, a square sheet or stair forn ) 1,
and a zigzag structure forn < 1.

Differences in Electron-Rich Multicenter Bonding as One
Moves across the Periodic Table.Two anomalies confront
us: (1) The usually reliable extended Zintl-Klemm concepts
lead to an electron count for the 2D slab (52/3) which is higher
than that observed; (2) For that electron count (52/3), one stair
overlap population (usually a reliable indicator of bonding) is
actually slightly negative, near zero.

The previous section provides us with an important clue in
the comparison of isoelectronic element structures, in particular
Sn2- and Tessmall overlap populations between bonded atoms
are observed only for Sn2- and not for Te. We proceed to trace
the origins for the difference back to increasingly simpler
systems.

Our first step is to examine the 1D tread of Figure 1. The
extended Zintl-Klemm count there is 61/3 per atom. 13

Figure 4. COOP curves of the Sn-Sn′ single bond (left) and of the
Sn-Sn" hypervalent bond (right) in the zigzag slab11. The Fermi level
for an electron count of 5 electrons per atom is shown.

Figure 5. How the energy of the three nets of fifth row elements (Sn
to Te) varies as a function of electron count.
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compares the calculated OP's for that count and for the lower
one of 5 electrons per atom.

Note the great discrepancy between Sn (some very small
COOPs) and Te for the 61/3 electron count. For 5 electrons per
main group element instead, all the Sn-Sn COOP values are
approximately of the same magnitude and comparable with the
value for the hypervalent Sn-Sn bond in the stair. On the other
hand, for the Te net, the values of the COOP at even the 61/3
electrons are substantial, comparable with those in a hypervalent
molecular model Te34-also calculated and with the values
reported for the 2D slab of Te (see12).

Similar results are obtained for the 1D stair, where the
extended Zintl-Klemm count is 62/3 per atom.14 shows the

Sn and Te 1D stairs, with the calculated OPs for 62/3 and 6
electrons. One Sn OP is slightly negative for the higher electron
count. Once again, the extended Zintl-Klemm count leads to
no interactions in the stair if it is built up from Sn atoms.

We retreat to the fundamental building block of all these
systems, the linear triatomic. As shown in15, a calculation on

the 22-electron Sn310- molecule gives an OP of-0.07 for the
Sn-Sn bond, while for Te-Te and I-I the OP is 0.16 and 0.16
(in Te3

4-, and I3-, respectively). We fixed the bond distances
at 3.17 Å for the Sn310-, 3.11 Å for Te34-, and 3.00 Å for I3-.

Where does the Sn-Sn antibonding come from? The interac-
tion diagram of Figure 6 shows the energy levels and some of
the orbitals of Sn310- system. The main features of this diagram
are also common to Te3

4- and I3-. We construct the orbitals of
the composite system by interacting aσs set (the three s orbitals,

all filled), a π set (px, py, all filled), and theσp set (pz the three-
center system, all but one MO occupied). First (left and right
in Figure 6) within each set (σs, π, σp) is tuned on, and then the
σs, σp mixing is allowed.

One source of repulsion might be the filledπ set of 12
electrons. The contributions of these orbitals to the OP are-0.07
(Sn) to-0.01 (I). So part of the differential is here.

But the greater part of the special destabilization of the Sn
system is due to s,p mixing. Take a look at the HOMO of Sn3

10-.
16 shows one contour of this HOMO. It is derived from the

formally nonbonding three-centerσp set. But note how desta-
bilized it is in Figure 6. The destabilization is due to the
antibonding mixing in of central atom s orbital, i.e., to s,p
overlap.

In fact, the contribution of the two electrons in thisoneMO
to the total OP is-0.48 (Sn),-0.17 (Te), and-0.12 (I). And
if one does a calculation for the triatomics with all s,p
interactions set to zero, the contribution of this orbital at the
OP is zero for all triatomics, and one obtains a much more even
set of OPs: 0.18 (Sn), 0.22 (Te), and 0.20 (I). Our conclusion
is that s,p mixing, operating mainly through this HOMO, is the
main factor responsible for destabilizing the Sn system relative
to the isoelectronic I (or Te) one.

More generally, it is clear that hypervalent bonding, for the
same electron count, should be much weaker for Sn than for I,
and in general, such bonding should be increasingly problematic
as one moves from the right toward the middle of the periodic
table in any period. What is a reasonable electron count (and
that is what the extended Zintl-Klemm counting gives) for I,
Te-, and Sb2- will not be a good one, but would result in too
much antibonding, for isoelectronic Sn3-. This is the primary
reason for the low actual electron counts in the Sn sheets.

While s,p mixing has been studied by us7,11 and by others12

as one goes up and down a group, the effect at hand is moving

(11) Seo, D.-K.; Hoffmann, R.J. Solid State Chem.1999, 147, 26.
(12) see for instance: Albright, T.; Burdett, J.; Whangbo, M.-H.Orbital

Interactions in Chemistry; John Wiley & Sons: New York, 1985; Chapter
6.

Figure 6. Interaction diagram for triatomic Sn3
10-. The orbitals of the

triatomic molecule are built from three sets of orbitals. Theσs set
includes only the s atomic orbitals, theσp set the pz atomic orbitals,
and theπp set the px, py atomic orbitals. Symmetry allows interactions
only between theσs set and theσp set.
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across a period. Is it the absolute energy, the separation, or the
extent in space of the ns and np orbitals, that matters? To
elucidate this point, we recalculate the triatomic system, varying
the orbital parameters of Sn and Te and observing the effect on
the OP.

In the extended Hu¨ckel method, the ionization potentialHii

is a measure of the energy of an orbital and the Slater coefficient
úi is related to the orbital extension. The parameters used in
the calculations are reported in Table 1. From In to I, the values
of Hii 's decrease, but the difference between theHss and Hpp

remains almost constant in the series. The orbitals definitely
became more contracted as one moves across a period.

In Table 2 we show a series of numerical experiments in
which we interchange in a symmetrical way theHii and theú
parameters of Sn and Te atom. (We fixed the distance at 3.17
Å in all the calculations). In this way, we can evaluate the
relative magnitude of the various contributions, following the
OP of the system. The calculations are divided in three series
of three calculations in which we fix theús andúp parameters
and use different set ofHii. The “end points” are the Sn system
(negative Sn-Sn OP of-0.074) and Te (positive OP, 0.167).
Thex indicates the value of the parameters used; the geometries
and the electron counts are identical. For each case, we give
the OP that emerges from calculation.

It turns out that variation of theHii is much less important
than the contraction of the orbitals. We also notice that a larger
difference betweenHss andHpp destabilizes the bond, and for
the same difference, a larger total sum of theHss and Hpp

increases the strength of the bond.
If the orbital exponents in Table 1 are to be taken at face

value, one may naturally suggest that s orbitals contract faster
than p orbitals on the right side of the periodic table, thus,
leading to the smaller s,p overlap and mixing. However,
relativistic Dirac-Fock calculations of the maximums of atomic
orbital radial densities in the In-I series show the opposite trend;
i.e., the s and p orbitals are better matched in size for I than for
In (see Table 3).13

We have come to a startling conclusionsthe Hii parameters
do not play a significant role in determining the extent of s,p
mixing, while the relative sizes of s and p orbitals seem to
suggest that s,p mixing is greater on the right side. We believe
that the following reasoning, somewhat speculative in nature,
may help to resolve this inconsistency.

It is apparent from Table 3 that both s and p orbitals contract
significantly from In to I. If one assumed that the average of s
and p orbital density maximums are indicative of the atomic
size, then one would expect a 0.37-Å diminution of atomic radii
when going from In to I (see Table 3). However, the empirical
atomic radii compiled by Slater suggest much smaller contrac-
tion (Table 3).14 While at present we do not have an explanation
for this effect, it nevertheless helps to rationalize the suggestion
of smaller s,p mixing for Te and I compared to In and Sn.

Indeed, not only the relative size of s and p orbitals determines
the extent of s,p mixing but also the effective distance between
two atoms (i.e. smaller distance leads to larger overlap and
mixing). To examine the role of this factor, we recalculated the
Sn-Sn overlap population values in Sn3

10- as function of Sn-
Sn distance. As is clearly seen from Figure 7, the OP increases
monotonically with increasing distance, a result that might
appear counterintuitive (the OP will go down eventually). We
trace this result to the influence of the “antibonding” hypervalent
MO depicted in16sthe greater Sn-Sn separation decreases
the s,p overlap, and thus the magnitude of s,p-mixing, which
in turn diminishes the antibonding character of this molecular
orbital. Therefore, on moving from left to right in the periodic

(13) Desclaux, J. P.At. Data Nucl. Data Tables1973, 12, 311. (14) Slater, J. C.J. Chem. Phys.1964, 41, 3199.

Table 1. Extended Hu¨ckel Parameters (eV forHii) Used in the
Calculations

Hss Hpp ús úp

In -12.60 -6.19 1.903 1.677
Sn -16.16 -8.32 2.12 1.82
Sb -18.80 -11.70 2.323 1.999
Te -20.80 -14.80 2.51 2.16
I -18.00 -12.70 2.679 2.322
Li -5.4 -3.5 0.65 0.65

Table 2. OP for the Triatomic Molecule as a Function of the
Variation of the Extended Hu¨kel Parameters from Sn to Te Atoma

Sn Te

Hss Hpp ús úp Hss Hpp ús úp OP

1 x x x x -0.074
2 x x x x -0.087
3 x x x x -0.058
4 x x x x 0.087
5 x x x x 0.095
6 x x x x 0.105
7 x x x x 0.157
8 x x x x 0.152
9 x x x x 0.167

aAn "x" indicates the parameters used in each calculation. The end
points are respectively the Sn3

10- and the Te34- molecules.

Table 3. Radius of Maximum Radial Density for s and p Valence
Orbitals As Calculated from Dirac-Fock Wavefunctions (p1/2 and
p3/2 Values Are Averaged)a

In Sn Sb Te I ref

Rs 1.18 1.10 1.03 0.96 0.92 13
Rp 1.56 1.37 1.24 1.15 1.07 13
Rp - Rs 0.38 0.27 0.21 0.19 0.15 13
Rat (theor) 1.37 1.24 1.14 1.06 1.00 14
Rat (emp) 1.55 1.45 1.45 1.40 1.40 14

a Rat are theoretical and empirical atomic radii. All values are given
in angstro¨ms.

Figure 7. Sn-Sn overlap population (OP) for Sn3
10- as function of

the Sn-Sn distance.
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table, theeffectiVe distance (relative to the size of the atoms)
between bonded atoms increases, leading to less s,p overlap
and s,p mixing. The reader is also referred here to an important
paper on s,p bonding in main group elements.15

Our conclusion is that the observed lowering of the electron
count in the hypervalent Sn slabssin response to antibonding
orbital repulsion for that would be a “normal” hypervalent
electron countsis connected to the diffuseness of the Sn orbitals.

The 3D Structure and the Role of the Countercation.Let
us now return to a previous troublesome point, the stability of
the square planar slab (11) with respect to the 2D stair one (1).
We found that for an electron count of 5 and 6 electrons the
square sheet was favored. We now build up from the 2D sheet
to the full structure. First, we examine the full 3D structure,
but without the Li atoms. The band structure (not reported here)
is very similar to that shown in Figure 2. Also, the Mulliken
charge of the Sn atoms and the COOPs for the Sn-Sn bonds
have the same value as in the 2D stair model. There is a very
small bonding interaction between the Snsq and Snbu of two
adjacent layers. (COOP) 0.03). Clearly the system is quite
two-dimensional in its Sn sublattice.

So we have to include the Li atoms in the calculations. The
importance of the Li atom for the final structure lies in its small
ionic radius. This is clear from looking at the whole series of
the binary alkali-tin (1:1) phases. The crystal structures of NaSn,
KSn, RbSn, and CsSn contain a (more or less) distorted
tetrahedral cluster of Sn4

4- (isoelectronic with P4).16 As
remarked previously, only for LiSn is this structural motif
unknown. Also, the authors of a recent paper17 on liquid alkali-
tin alloys demonstrated that in LiSn solution the Sn4

4- tetra-
hedron is unstable. Due to the small size of the Li ion, Sn
intercluster interactions are made possiblr and destabilize the
intracluster bond.

We were reluctant to include the Li atoms in the calculation,
because of the well-known problems in the choice of parameters
for the alkali metal. For Li, the set of extended Hu¨ckel
parameters derived from metal atoms has the 2s and 2p orbitals
too low in energy and quite diffuse. The result is too much
interaction with the Sn atoms. We prefer to use a parameter set
that has orbitals with higher energy and a little less diffuse.
This is in order to have some interaction but not an excessive
amount. In general, questions about Li and Li+ parameters in
extended Hu¨ckel calculations render problematic calculations
on this element.

The band structure, total DOS, and Li contribution of the
3D stair with lithium atoms are reported in Figure 8. Below
the Fermi level, the larger contribution of the Li atoms to the
total DOS is around-10 eV. The integrated lithium contribution
to the total DOS is around 4%.

The COOP values in the 3D stair are shown schematically
in 17. All the Li-Li interactions, not reported in17, are almost
zero. The Snsq-Sbsq and the Snbu-Snbu bonds have the same
strength. There are small bonding Li-Sn interactions. The Snsq

interactions with neighbor Li atoms have the same strength,
while for the Snbu, one Sn-Li interaction is larger than the other
two. Snsq has its lone pair (pz) symmetrically interacting with
all the Li atoms, while Snbu atom instead has its lone pair
localized in the direction of only one of the Li atoms.

Let us take a look at the electron distribution in the slab.
The Libu and Lisq atoms carry a charge of+0.56 and+0.59,
respectively, while Snbu and Snsq are negatively charged,-0.53

and -0.65, respectively. If we use the Mulliken charges as a
reasonably realistic measure of the actual electron count on the
Sn slab (and we are cautious about this), we obtain an electron
count of 4.6 electrons per Sn atom. Please look at Figure 5 again.
For Sn with an electron count lower than 5, the 2D stair is more
stable than the square planar. This result, we think, is also an
indication of the importance of the Li atoms not only crystal-
lochemically (i.e., the consequences of their small size) but also
in setting the degree of electron transfer which makes one or
another crystal geometry possible.

Concluding Remarks

What began as a series of theoretical defeats turned into a
puzzle. One that in turn led to what we believe is a net gain in
our understanding. The unusual 2D Sn sublattice in Li did not
have an electron count that fits the usually reliable extended
Zintl-Klemm number (52/3 electrons per Sn) appropriate for
the geometry observed and derived in two different ways. In
fact, in our calculations the extended or electron-rich Zintl-
Klemm electron count led to some completely broken bonds.

A methodical tracing back of this effect led to a surprises
isoelectronic electron-rich Sn, Sb, Te, and I compounds differed
tremendously in their bonding strength. What was reasonable
bonding for Sb, Te, and I was not such for Sn. We found that
the primary source of the differential lay in antibonding
interactions in the HOMO of the electron-rich three-center bond.
For the same electron count, the antibonding in the HOMO is
greater for Sn than I. This in turn could be traced to greater s,p
mixing for Sn, and that was due to the relative diffuseness of
the Sn valence orbitals.

(15) Kutzelnigg, W.Angew. Chem., Int. Ed.1984, 23, 272.
(16) Müller, W.; Volk, K.Z. Naturforsch.1977, 32B, 709. Hewaidy, I.

F.; Busmann, E.; Klemm, W.Z. Anorg. Allg. Chem.1964, 328, 283.
(17) Genser O., Hafner J.J. Non-Cryst. Solids1999, 250-252, 236.

Figure 8. Band structure of the 3D crystal (left) and the contribution
of the Li atoms at the total DOS (right). The Fermi level for an electron
count of 5 electrons/atom is also shown.
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The effect has to be quite general.s,p mixing will diminish
as one moVes across a period. And extended, electron-rich
Zintl-Klemm electron counts that are “correct” for the right
side of a main group sequence (groups 15-17) are likely to
weaken bonding interactions in electron-rich systems for group
14 elements.For such molecules or extended system, we believe
that in general the preferred electron count will be lowered from
the extended electron-rich Zintl-Klemm one.

In a further suggestive finding, the Li ions in the lattice are
not only likely to influence the structure by their small size but
may also tune the actual electron count on the anionic sheet.

Computational Details
The calculations presented in this work are in the framework of the

extended Hu¨ckel18 tight-binding method.19 Either the YAeHMOP20 and
CACAO21 software packages were used. The parameters used in the

calculations are listed in Table 2. The off-diagonal elements of the
Hamiltonian were evaluated with the Wolfsberg-Helmoholtz formula.22

Numerical integrations over the symmetry-unique section of the
Brillouin zone of the two-dimension structure were performed using a
set of 400k-points. The three-dimensional calculations used 500k-points.
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