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ABSTRACT: The useful perturbation expressions for wave functions and energies
Ž .that are needed in perturbational molecular orbital PMO theory are rederived and

generalized in two aspects: First, degenerate systems now can be treated in a systematic
manner, as in the case of nondegenerate systems. Second, the new expressions can cope
with complex wave functions. Two examples of applications to degenerate systems are
given to show the qualitative and quantitative utility of the new expressions. Q 2000
John Wiley & Sons, Inc. Int J Quant Chem 77: 408]420, 2000

Introduction

he most successful theoretical approach toT the electronic structure of molecules has been
Ž .through the molecular orbital MO approximation

and its implementation in computational programs
at many different levels of sophistication. Pro-
pelled by rapidly developing computer technol-
ogy, MO calculations have become easier, and the
systems dealt with accurately have increased in
their size.

Qualitative MO theory also has played an es-
w xsential role in the field 1]3 . Mere agreement

between numerical calculations and experimental
results often does not satisfy chemists, unless an
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apprehendable rationalization—an explanation
couched in words and accessing trends—is given.
Qualitative MO theory often shows why the nu-
merical results turn out as they do. It also provides
a means for guided speculation about molecular
properties that could lead to new experiments
and to further detailed quantum mechanical cal-
culations.

Over the years, the perturbational molecular
Ž .orbital PMO method has been an important part

w xof the apparatus of qualitative MO theory 2 . To
understand the electronic structure of a compli-
cated molecule, it is fruitful to relate it to a simpler

Žone. A difference between the electronic structure
.of the complex molecule and its simpler model

may then be thought of as a consequence of a
certain perturbation, a distinction in their geome-
tries or constituents. Three different types of per-
turbation are commonly encountered in electronic
structure problems—intermolecular, geometry,

w xand electronegativity perturbations 2 . Combined
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GENERALIZED PMO THEORY

with a fragment orbital formalism, the PMO
method has been very useful in analyzing these
problems systematically.

In ordinary perturbation theory, a perturbation
is expressed mathematically by a perturbed
Hamiltonian in the Schrodinger equation describ-¨

w xing the whole system 4,5 . With atomic orbitals as
a basis set, these perturbations manifest them-
selves as changes in Hamiltonian and overlap ma-
trix elements. Therefore, it is natural to employ
those matrix elements in deriving the expressions
of energies and wave functions of the perturbed
system. Such expressions were derived in the work

w x w xof Imamura 6 , Libit and Hoffmann 7 , and
w xWhangbo et al. 8 .

Imamura first developed a general PMO method
that is particularly useful within the extended
Huckel method, a simple approximate MO proce-¨
dure. Here, atomic orbital coefficients were used to
express all the perturbation terms for both nonde-
generate and degenerate systems. Imamura’s for-
mulas for nondegenerate systems were reformu-
lated by Libit and Hoffmann within a fragment
orbital formalism. Whangbo showed that the PMO
method can be useful even within the Hartree]
Fock approximation. The fragment orbital formal-
ism was employed to derive the energies and
orbital coefficients for both nondegenerate and de-
generate systems. It was shown how the coefficient
expressions in terms of fragment and atomic or-
bitals can be directly related. Whangbo et al.’s
work does not contain the expressions for the
higher-order perturbation terms of energies and
orbital coefficients for the degenerate systems.
These are sometimes useful and will be provided
here. We also found a few misprints in the pub-
lished expressions for the nondegenerate systems.

A second contribution of this article is that we
generalize the PMO method for complex wave
functions, something that has not been done gener-
ally earlier. This derivation is vital for the pertur-

Ž .bational crystal orbital PCO method recently de-
w xveloped in our group 9 . This PCO method allows

one to treat and analyze electronic-band structures
of extended systems by using crystal orbitals.

Notation and Definitions

In this section, we describe the notation that we
are going to use throughout the article. The nota-

w xtion is built upon earlier work of Imamura 6 ,
w x w xLibit and Hoffmann 7 , and Whangbo et al. 8 . At

the end of this section, we set up the master
equations for various orders of the perturbation
theory, which we use later for the derivation of
corresponding perturbative expressions for nonde-
generate and degenerate cases.

In quantum chemistry, one is concerned with
finding the solution for the time-independent
Schrodinger equation for a given molecule or a¨
solid:

ˆ 0 0 0< : < : Ž .H C s e C . 1

The PMO theory that we deal with in this article is
based on a one-electron approximation to the
Schrodinger equation. In this model, the exact¨

ˆ ˆe f fHamiltonian H is replaced by H , where an
electron interacts only with the average field cre-
ated by other electrons and nuclei. Consequently,

Žthe exact Schrodinger equation which includes all¨
.electrons interacting with each other is replaced

by a series of one-electron equations for electrons
i s 1, . . . , N:

ˆe f f 0 0 0< : < : Ž .H C s e C . 2i i i

The perturbation theory that we develop is inde-
pendent of the particular form of the effective

w Ž .xone-electron Hamiltonian Eq. 2 . On the other
hand, one has to choose a certain one-electron
formalism when the perturbation theory results
are applied to a specific molecule or a solid. When
illustrating applications of the molecular perturba-

w xtion theory, we use the extended Huckel 10]12¨
approximation for the effective Hamiltonian. For
the sake of notational simplicity, we substitute
ˆe f f ˆH by H throughout the remainder of the article.

MOs are usually built up as linear combinations
Ž . < 0:of atomic orbitals LCAO . The MO C can bei

expended linearly in the atomic orbital basis as

< 0: 0 < : Ž .C s c x , 3Ýi n i n
n

< :where x is atomic orbital n , weighted in sum 3n

by the atomic orbital coefficient c0 . We now sub-n i
< 0: Ž . Ž .stitute C in Eq. 2 by its expansion from Eq. 3i

w Ž .xand premultiply that new equation Eq. 4 by
² <x :m

ˆ 0 0 0< : < : Ž .H c x s e c x , 4Ý Ýn i n i n i nž / ž /
n n

ˆ 0 0 0² < < : ² < : Ž .x H x c s e c x x , 5Ý Ým n n i i n i m nž /
n n

0 0 0 0 Ž .H y e S c s 0, 6Ž .Ý mn i mn n i
n
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0 ˆ0 0² < < : ² < :where H s x H x and S s x x . Sec-mn m n mn m n

Ž . 0ular Eq. 6 permits one to calculate energies ei
and atomic orbital coefficients c0 , if the effectiven i
Hamiltonian matrix elements H 0 and the atomicmn

orbital overlap matrix elements S0 are known.mn

In perturbation theory, one assumes that the
Ž .solution for the original Eq. 6 is explicitly known.

Next, Hamiltonian and overlap matrix elements
are altered in some well-defined way, which speci-

Ž .fies the perturbation. Typical examples include 1
an interaction of two previously noninteracting

Žmolecular fragments an intermolecular perturba-
. Ž . Žtion , 2 a geometry change within a molecule a

. Ž .geometry perturbation , and 3 a substitution of
Žone atom by another which may be viewed as an

.electronegativity perturbation . A new secular
equation has to be written with altered matrix
elements H and S :mn mn

Ž . Ž .H y e S c s 0. 7Ý mn i mn n i
n

Note that we have dropped the superscript 0 from
Ž .all terms in Eq. 7 .

Now, we make a connection between the new
and old Hamiltonian and overlap matrix elements
in the atomic basis. If those changes are relatively
small, then

0 Ž .H s H q dH , 8mn mn mn

0 Ž .S s S q dS . 9mn mn mn

In any sort of quantitative description, one has to
Ž . Ž .calculate, first, dH and dS in Eqs. 8 and 9 .mn mn

However, it is often more convenient to express
these changes in the MO basis:

0 ˜ Ž .H s H q D , 10i j i j i j

˜ Ž .S s d q S . 11i j i j i j

In the last equation, it is assumed that the MO
basis set, unlike the atomic orbital basis set, is
orthonormal, that is, S0 s d . To evaluate Eqs.i j i j
Ž . Ž .10 and 11 , an explicit relationship is needed
between the matrix elements in the MO basis and
those in the atomic orbital basis. This connection
may be established in the following way:

0 ² 0 < 0 < 0:e d s C H Ci i j i j

0 ² < 0 < : 0 0 0 0 Ž .s c x H x c s c H c , 12Ý Ým i m n n j m i mn n j
m , n m , n

² 0 < 0: 0 ² < : 0 0 0 0d s C C s c x x c s c S c ,Ý Ýi j i j m i m n n j m i mn n j
m , n m , n

Ž .13

˜ 0 0² < < :D s C dH Ci j i j

0 ² < < : 0 0 0s c x dH x c s c dH c ,Ý Ým i m n n j m i mn n j
m , n m , n

Ž .14

˜ 0 0² < :S s C Ci j i j

0 ² < : 0 0 0 Ž .s c x x c s c dS c . 15Ý Ým i m n n j m i mn n j
m , n m , n

In the following derivations, we use mostly the
Ž . Ž .left-hand equalities in Eqs. 12 ] 15 , keeping in

mind that the right-hand double summations are
necessary for obtaining numerical answers in any

Žreal perturbational calculation see the Applica-
.tions section .

w Ž . Ž .xIf the perturbations Eqs. 10 and 11 are rela-
tively small, then new energies e and new wavei
functions may be expressed as a series expansion,
where the superscript n is the order of the pertur-
bation:

0 1 2 Ž .e s e q e q e q ??? , 16i i i i

< : < 0: < 1: < 2: Ž .C s C q C q C q ??? , 17i i i i

< n: n < 0: Ž .C s t C , 18Ýi ji j
j

< : 0 < 0: 1 < 0: 2 < 0:C s t C q t C q t C q ??? .Ž .Ýi ji j ji j ji j
j

Ž .19

The n-th order corrections to the original wave
function are obtained as a linear combination of
the zeroth-order MOs with the expansion coeffi-

n w Ž .xcients t Eq. 18 . If we are able to calculate the
elements of the t matrix and the energy correc-
tions to any order n, and given the convergence of

Ž . Ž .series 16 and 17 , then by carrying out the sum-
mation of these series we should be able to obtain

Ž .the exact solution of Eq. 7 . However, the first few
Ž . Ž .terms in expansions 16 and 17 are often suffi-

Ž .cient for the qualitative and often quantitative
description of chemical interactions. In this article,
we derive the perturbation expansion up to second
order both in energies and wave functions.

By substituting the atomic orbital expansion for
< : w Ž .xC Eq. 18 into the left and right sides of Eq.i
Ž .17 , the relationship between the transformation
matrix t’s and atomic orbital coefficients c’s can

VOL. 77, NO. 1410
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be established as follows:

n < : < n: n < 0: n 0 < :c x s C s t C s t c x ,Ý Ý Ýn i n i ji j ji n j n
n j j , n

Ž .20

n 0 n Ž .c s c t . 21Ýn i n j ji
j

Ž .We infer from Eq. 21 that the n-th order correc-
tions to the atomic orbital coefficients cn can be
obtained by multiplying from the right the zeroth-
order coefficient matrix c0 by the n-th order trans-
form matrix t 0. This equation enables us to move
in perturbative expansions from atomic bases to
the molecular bases and vice versa.

At this point, all the tools are at hand for the
deducing a master equation which will serve as a
starting point for the derivations of both nonde-
generate and degenerate corrections to the ener-
gies and wave functions. This master equation
may be obtained in the following way: First, Eq.
Ž . Ž .22 for the new perturbed system is premulti-

² 0 <plied by old wave function C , which leads toj
Ž .Eq. 23 . This equation can be rewritten in the

atomic basis by the substitution of molecular wave
functions by their corresponding atomic expansion

Ž . w Ž .xEq. 3 Eq. 24 . The new atomic orbital expansion
coefficients c may be replaced by the perturba-n i

Ž . Ž .tive expansion Eq. 17 and Eq. 21 :

ˆ < : < : Ž .H C s e C , 22i i i

0 ˆ 0² < < : ² < : Ž .C H C s c C C , 23j i i j i

0 0 Ž .c H c s e c S c , 24Ý Ým j mn n i i m j mn n i
m , n m , n

0 0 0 0c H c t y e c S c t s 0.Ž . Ž .Ý Ý m j mn n k k i i m j mn n k k i
m , nk

Ž .25

Ž .Equation 25 contains new Hamiltonian and over-
lap matrix elements H and S which may bemn mn

Ž . Ž .evaluated with the help of Eqs. 8 and 9 . Then,
the summations over m and n can be carried out

Ž . Ž .explicitly, with the help of Eqs. 12 ] 14 :

c0 H c0 s c0 H 0 q dH c0Ž . Ž .Ý Ým j mn n k m j mn mn n k
m , n m , n

0 ˜ Ž .s e d q D , 26j jk jk

c0 S c0 s c0 S0 q dS c0Ž . Ž .Ý Ým j mn n k m j mn mn n k
m , n m , n

˜ Ž .s d q S . 27jk jk

Ž .Equation 25 now may be rewritten with only one
summation over index k:

0 ˜ ˜ Ž .e d q D y e S y e d t s 0. 28Ý j jk jk i jk i jk k i
k

Only energies e and wave-function mixing coeffi-i
cients t remain unknown in the last equation. Byk i
explicitly performing double summations in the

w Ž . Ž .xatomic basis Eqs. 26 and 27 , we have set up
the perturbational problem in the MO basis. By
expressing energies e and wave-function mixingi
coefficients t through corresponding perturbativek i

Ž . Ž .expressions Eqs. 16 and 17 , the desired master
equation of PMO theory is found:

0 0 0 1˜ ˜e y e d q D y e S y e dŽ .Ý ž /j i jk jk i jk i jk
k

2 1 0 1 2˜ Ž .q ye d y e S q ??? t q t q t q ???ž /i jk i jk k i k i k i

Ž .s 0. 29

0 0 Ž .Here, we assume that H and S in Eqs. 8 and
Ž .9 are zeroth-order quantities and, correspond-
ingly, dH and dS are first-order quantities. Then,

Ž .various terms on the left-hand side of Eq. 29 may
be regrouped according to their orders of magni-
tude. Each of these terms is, in turn, set to zero,

Ž .which ensures that Eq. 29 is always satisfied:

0 0 0 Ž .e y e d t s 0, 30Ž .Ý j i jk k i
k

0 0 1 0 1 0˜ ˜e y e d t q D y e S y e d t s 0,Ž .Ý ž /j i jk k i jk i jk i jk k i
k

Ž .31

0 0 2 0 1 1˜ ˜e y e d t q D y e S y e d tŽ .Ý ž /j i jk k i jk i jk i jk k i
k

2 1 0˜ Ž .y ye d y e S t s 0. 32ž /i jk i jk k i

Ž . Ž .The MOs which are obtained from Eqs. 30 ] 32
are not properly normalized. Normalization condi-
tions have to be applied directly in each order in
the perturbation series, which, in turn, determines

Ž n.the diagonal corrections to the wave functions t :i i

² < : Ž .C C s 1, 33i i

0U 0 Ž .t t s 1, 34Ý k i k i
k

1U 1 ˜ Ž .t q t q S s 0, 35i i i i i i

2U 2 1U 1 1U ˜ 1 ˜ Ž .t q t q t t q t S q t S s 0. 36Ý ž /i i i i k i k i k i k i k i i k
k
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The wave function C expressed in the way abovei
can have an arbitrary phase. A convenient way to
fix its phase is just to make t real. It follows thati i
t n for any n is a real number as well. As we willi i
see later, when working with complex wave func-
tions, the phases of all other t n’s are uniquelyji
determined by these conditions.

For the nondegenerate perturbation theory, Eq.
Ž . 030 is satisfied with a t which is a unit matrix,
that is, the initial wave functions do not have to be
mixed in the zeroth-order. The first-order energy

Ž .corrections are found from Eq. 31 , followed by
the first-order corrections to wave functions. This
procedure is iteratively applied to higher-order
terms. In the next section, we derive energy and
wave-function correction for a perturbation in a
nondegenerate system.

Ž .For two degenerate MOs i and j e s e , thei j
Ž .zeroth-order Eq. 30 does not determine the ze-

roth-order mixing coefficients for the wave func-
tions. It turns out that, unlike the nondegenerate
case, the initial wave functions must be properly

Žmixed in zeroth-order ‘‘prepared for the pertur-
.bation’’ before proceeding to higher-order cor-

rections. The following derivation of higher-order
corrections is also conceptually different from the
corresponding nondegenerate derivations. Follow-
ing the treatment of the nondegenerate case, we
give the corrections to the energies and wave func-
tions up to second-order for a perturbation in a
degenerate system.

Nondegenerate Case

When all unperturbed wave functions, C0 ’s,i
Ž 0 0 .have different energies i.e., e / e , if i / j , Eq.i j

Ž . 030 gives t s 0 whenever i / j. To satisfy Eq.ji
Ž . 034 , therefore, t should be 1, because this valuei i
should be a real number as defined in the previous
section. To summarize,

0 Ž .t s d . 37ji ji

Ž . Ž .Upon using Eq. 37 , Eq. 31 may be simplified
to

0 0 1 ˜ 0 ˜ 1 Ž .e y e t q D y e S y e d s 0. 38Ž . ž /j i ji ji i ji i ji

Ž .When i s j, the first term in Eq. 38 disappears
and, hence, gives rise to the expression for e1:i

1 ˜ 0 ˜ Ž .e s D y e S . 39i i i i i i

Ž .When i / j, Eq. 38 may be rewritten to obtain
t1 :ji

˜ 0 ˜D y e Sji i ji1 Ž .t s . 40ji 0 0e y ei j

Ž . 1Note that in Eq. 40 t has a fixed phase. Thisji
0 Ž .follows from using t expressed in Eq. 37 , previ-ji

ously defined as a real number.
To obtain t1 , we have to go back to one of thei i

normalization condition formulas, which is, in this
Ž . 1case, the expression of first order, Eq. 35 . Since ti i

Ž .is a real number, Eq. 35 leads to

1
1 ˜ Ž .t s y S . 41i i i i2

Proceeding in a similar manner, we obtain the
second-order solutions summarized below:

2 1 ˜ ˜ 0 ˜ 1 Ž .e s ye S q D y e S t 42Ý ž /i i i i i k i i k k i
k/i

1 ˜ 0 ˜ 1˜ D y e S t1 S q t ž /jk i jk k iji ji2 1 1˜t s y S t y e q Ýji i i ji i 0 0 0 02 e y e e y ei j i jk/i

Ž .43

1
U U2 1 1 1 1˜ ˜ Ž .t s y t S q t S q t t . 44Ý ž /i i k i k i k i i k k i k i2 k

Once again, the t 2 values have unique phases.ji
Ž . 2In Eq. 44 , t has to be real, since the overlapi i

˜ ŨŽ .matrix is Hermitian i.e., S s S . In other words,k i i k
Ž .Eq. 44 can be reformulated as

1
U U U2 1 1 1 1˜ ˜t s y t S q t S q t tÝ ž /i i k i i k k i i k k i k i2 k

1
U1 1 1˜ Ž .s y 2 Re t S q t t . 45Ž .Ý ž /k i i k k i k i2 k

Ž . Ž .By substituting t using 40, Eqs. 42 and 43k i
can be rewritten

˜ 0 ˜ ˜ 0 ˜D y e S D y e Sž / ž /i k i i k k i i k i2 1 ˜ Ž .e s ye S q 46Ýi i i i 0 0Ž .e y ei kk/i

˜ ˜ 0 ˜ 1 ˜ ˜ 0 ˜S D y e S q 2 e S D y e Sž / ž /i i ji i ji i ji ji i ji2 1t s y y eji i 20 0 0 02 e y eŽ .i j e y eŽ .i j

˜ 0 ˜ ˜ 0 ˜D y e S D y e Sž /ž /jk i jk k i i k i Ž .q . 47Ý 0 0 0 0Ž .e y e e y eŽ .k/i i j i k

These expressions have not been given before in
their full and correct form.
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Degenerate Case

The development of the degenerate perturba-
tion theory is significantly different from the non-
degenerate case. It is clear that expressions of the

Ž .form of Eq. 40 and thereafter have to be some-
how modified for degenerate orbitals; otherwise,
the denominator would become zero for many
terms in the perturbative series. To the best of our
knowledge, only expressions for calculating ze-
roth-order wave functions and first-order correc-
tions to energies for a perturbation in a system
with degenerate MOs have been published. We
present in this section a consistent and unambigu-
ous procedure for developing degenerate pertur-
bation theory to any perturbative order.

First, a little notational development is in order:
We divide the set of original MOs orbitals into two

Ž . Ž .subsets, of degenerate D and nondegenerate N
molecular MOs. We assume for the sake of sim-
plicity that there is only one set of degenerate
orbitals, although the extension to multiple sets is
straightforward. We denote the subscripts for de-
generate MOs by adding a letter D to that sub-
script and, similarly, for nondegenerate MOs by
augmenting the index with N.

ZEROTH-ORDER CORRECTIONS TO WAVE
FUNCTIONS AND FIRST-ORDER
CORRECTIONS TO ENERGIES

To calculate the zeroth-order correction to wave
Ž .functions, we start from Eq. 30 . If one of the MOs

i or j belongs to the nondegenerate set, then e0 yj
e0 / 0; therefore, t 0 s 0. On the other hand, if bothi ji
MOs belong to the degenerate set, then t 0 re-j iD D

mains undefined by this procedure. To calculate
zeroth-order correction to degenerate wave func-

Ž .tions, we have to use first-order Eq. 31 . In this
case, since e0 y e0 s 0, the following secularj iD D

equation is set up for the zeroth-order corrections
to degenerate wave functions:

˜ 0 ˜ 1 0 Ž .D y e S y e d t s 0, 48Ý ž /j k i j k i j k k iD D D D D D D D D D
k

0 1 0˜ ˜ ˜ ˜D y e S y e D y e S ???ž / ž /11 i 11 i i2 i 12D

0 0 1˜ ˜ ˜ ˜D y e S D y e S y e ???ž / ž /21 i 21 22 i 22 iD

??? ??? ???

Ž .s 0. 49

Ž .First, solution of secular Eq. 49 leads to the first-
order energy corrections for the degenerate or-
bitals. We are making an assumption here that all

Ž .eigenvalues of secular Eq. 49 are nondegenerate.
In this case, a zeroth-order mixing of degenerate
MO k into MO i , t 0 , can be calculated fromD D k iD D

Ž . Ž .Eqs. 48 and 49 :

< 0 : 0 < 0 : Ž .XC s t C . 50Ýi k i kD D D D
k

Instead of the old zeroth-order MOs i , we haveD
obtained an equivalent set of new zeroth-order
primed MOs iX . From the point of view of theD
original unperturbed problem, the old and new
sets of degenerate MOs are completely equivalent.
The difference between them arises when a pertur-
bation is introduced—the new zeroth-order wave
functions diagonalize not only the original Hamil-
tonian matrix, but also the first-order perturbation

˜ 1Ž .matrix D y e d . Consequently, possiblej k i j kD D D D D
Ž .infinities disappear from Eq. 40 .

Here, a notational change has to be introduced
for simplifying further analysis. As the new degen-

< 0 :Xerate wave functions C are calculated, we dropiD

the prime from their subscripts and use them as if
they were the original set of zeroth-order degener-
ate wave functions. In this new basis set, t 0

k iD D

becomes a unit matrix d 0 , and, therefore, fromk iD D
Ž .Eq. 48 it follows that

1 ˜ 0 ˜ Ž .e s D y e S . 51i i i i i iD D D D D D

Ž .Notice that Eq. 51 looks similar to the analogous
Ž .Eq. 39 for the nondegenerate perturbation theory.

An equivalent expression is found for the first-
order corrections to the energy of orbitals belong-
ing to the nondegenerate set in a composite degen-
erate]nondegenerate system.

FIRST-ORDER CORRECTIONS
TO WAVE FUNCTIONS

At this point, we have the correct zeroth-order
wave functions and first-order corrections to ener-
gies of MOs. Next, the first-order corrections to
wave functions have to be computed. If the MO
for which this correction is sought belongs to the
nondegenerate set of the composite system, then
the expression for t1 is similar to the one fromjiN
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Ž .Eq. 40 :

˜ 0 ˜D y e Sji i jiN N N1 Ž .t s , 52ji 0 0N e y ei jN

where subscript j indicates both nondegenerate
and degenerate MOs.

If MO i belongs to the degenerate set, then the
procedure for finding t1 has to be modified. If jjiD

is a nondegenerate MO, then an expression for
t1 is found, which is completely equivalent toj iN D

Ž . Ž .Eqs. 10 and 52 . The derivation is analogous to
Žone for the nondegenerate case see the previous

.section and is omitted here. If j is also a degener-
ate MO, then the above-mentioned derivation does

0 0 Ž .not work, because e y e s 0 in Eq. 38 . Thej iD D
Ž .second-order Eq. 32 has to be used in order to

find the first-order corrections to degenerate MOs
t1 :j iD D

0 0 2e y e d tÝ Ž .j i j k k iD D D D
k

˜ 0 ˜ 1 1q D y e S y e d tž /j k i j k i j k k iD D D D D D

2 1 0˜ Ž .q ye d y e S t s 0. 53ž /i j k i j k k iD D D D

Ž .The first term in Eq. 53 is identically zero. The
second term can be manipulated in the following
way:

˜ 0 ˜ 1 1D y e S y e d tÝ ž /j k i j k i j k k iD D D D D D
k

˜ 0 ˜ 1 1s D y e S y e d tÝ ž /j k i j k i j k k iD D D D D D D D D D
kgD

˜ 0 ˜ 1 1q D y S y e d tÝ ž /j k i j k i j k k iD N D D N D D N N D
kgN

s e1 d y e1 d t1Ý Ž .j j k i j k k iD D D D D D D D
kgD

˜ 0 ˜ 1q D y e S tÝ ž /j k i j k k iD N D D N N D
kgN

s e1 y e1 t1Ž .j i j iD D D D

˜ 0 ˜ 1 Ž .q D y e S t . 54Ý ž /j k i j k k iD N D D N N D
kgN

Ž .When deriving line 3 from line 2 in Eq. 54 , we
have made use of the fact the the new zeroth-order
degenerate wave functions diagonalize the pertur-

˜ 1Ž .bation matrix D y e d .j k i j kD D D D D

Finally, we have to calculate the third term in
Ž .Eq. 53 :

2 1 ˜ 0ye d y e S tÝ ž /i j k i j k k iD D D D D
k

2 1 ˜ 0s ye d y e S dÝ ž /i j k i j k k iD D D D D
k

2 1 ˜ 1 ˜ Ž .s ye d y e S s ye S . 55i j i i j i i j iD D D D D D D D D

Now, we combine together the three terms in Eq.
Ž .53 into a single equation:

1 1 1 ˜ 0 ˜ 1e y e t q D y e S tÝŽ . ž /j i j i j k i j k k iD D D D D N D D N N D
kgN

1 ˜ Ž .y e S s 0. 56i j iD D D

Ž . 1The only unknown remaining in Eq. 56 is t ;j iD D

therefore, it may be expressed in terms of other
known quantities as

1
1t sj iD D 1 1e y eŽ .i jD D

0 1 1˜ ˜ ˜= D y e S t y e S .Ý ž /j k i j k k i i j iD N D D N N D D D D
kgN

Ž .57

Ž .Equation 57 can be cast into more explicit form
1 Ž .by substituting t by its value from Eq. 52 :k iN D

1
1t sj iD D 1 1e y eŽ .i jD D

0 0˜ ˜ ˜ ˜D -e S D -e Sž / ž /j k i j k k i i k iD N D D N N D D N D
= Ý 0 0e y ei kkgN D N

1 ˜ Ž .ye S . 58i j iD D D

Ž .As seen from Eq. 58 , degenerate wave function
j mixes into another degenerate wave function iD D
through two mechanisms: First, it mixes via inter-
action with a nondegenerate wave function kN
and the subsequent interaction of the latter with
i . This kind of mixing is reminiscent of the sec-D
ond-order mixing mechanism in the nondegener-

w Ž .xate perturbation theory see Eq. 43 , although
here it is a formally first-order process. The small

Ž 1 1 . Ž .denominator 1r e y e in Eq. 58 makes thej iD D

expression for t1 first order in magnitude.j iD D
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Two degenerate wave functions can also mix
into each other through the second term in Eq.

˜Ž . Ž .58 , if there exists a nonzero perturbation Sj iD D

to the overlap matrix element between those MOs.
The renormalization for the degenerate orbitals is
done in the same way as for the nondegenerate
one. The value of the first-order self-correction to
degenerate MO i , t1 , is calculated according toD i iD D

Ž .Eq. 41 . In summary, degenerate MOs interact
with each other in first order in a way similar to
the second-order interactions between nondegen-
erate MOs.

SECOND-ORDER CORRECTIONS TO WAVE
FUNCTIONS AND ENERGIES

Second-order corrections to energies of nonde-
generate wave functions of the composite system

Ž .are computed as prescribed by Eq. 43 . To calcu-
late the second-order corrections to energies of

Ž .degenerate wave functions, we start from Eq. 32 ,
where we set j to i. The first term disappears in

Ž .Eq. 32 and we are left with the following equa-
tion:

0 1 1˜ ˜D y e S y e d tÝ ž /i k i i k i i k k iD D D D D D
k

2 1 0˜ Ž .q ye d y e S t s 0. 59ž /i i k i i k k iD D D D D

Ž .The first and second terms in term in Eq. 59 can
be considerably simplified in the same manner as

Ž . Ž .Eqs. 54 and 55 :

˜ 0 ˜ 1 1D y e S y e d tÝ ž /i k i i k i i k k iD D D D D D
k

˜ 0 ˜ 1 Ž .s D y e S t , 60Ý ž /j k i j k k iD N D D N N D
kgN

2 1 ˜ 0 2 1 ˜ Ž .ye d y e S t s ye y e S . 61Ý ž /i i k i i k k i i i i iD D D D D D D D D
k

The second-order correction to energies of degen-
erate wave functions is calculated by substituting

Ž . Ž . Ž .Eqs. 60 and 61 into Eq. 59 :

2 ˜ 0 ˜ 1 1 ˜ Ž .e s D y e S t y e S . 62Ý ž /i i k i i k k i i i iD D N D D N N D D D D
kgN

Ž . Ž .Notice that Eq. 62 is similar to Eq. 42 for the
nondegenerate case, except in the former case the
summation over k is not carried out for the set of

Ž .degenerate orbitals. Equation 62 may be rewrit-

ten in more detail by expanding the t1 term:k iN D

˜ 0 ˜ ˜ 0 ˜D y e S D y e Sž / ž /i k i i k k i i k iD N D D N N D D N D2e s Ýi 0 0D e y ei kkgN D N

1 ˜ Ž .y e S . 63i i iD D D

The second-order correction to nondegenerate
MOs in a composite system have the same form as

Ž .that of Eq. 43 . If one wants to derive second-order
corrections to degenerate MOs, then a modified
procedure has to be used, similar to one applied in
the previous subsection. A third-order analog of

Ž . Ž .Eqs. 30 ] 32 becomes a starting point for subse-
quent computation. Without going into further de-
tail, we provide here only the final expression for
calculating the second-order mixing coefficients of
nondegenerate MO j into degenerate MO i andN D
of degenerate MO j into degenerate MO i . ToD D
use these expressions in practical calculations, the
previously calculated zeroth-, first-, and second-
order corrections to energies and wave functions

Ž . Ž .have to be substituted into Eqs. 64 and 65 :

1
2 0 1˜ ˜t s D y e S tÝ ž /j i j k i j k k iN D N D N D0 0e y eŽ . kgN , Di jD N

1 1 1 ˜ Ž .y e t y e S , 64i j i i j iD N D D N D

1
2 0 2˜ ˜t s D y e S tÝ ž /j i j k i j k k iD D D N D D N N D1 1e y eŽ . kgNi jD D

1 1 2 1 2˜ ˜ Ž .ye S t y e t y e S . 65Ýi j k k i i j i i j iD D D D D D D D D
kgN , D

Up to second-order renormalization of a degen-
erate wave function leads to second-order self-cor-
rection coefficient t 2 . t 2 is calculated as in thei i i iD D D D

Ž .nondegenerate theory, that is, using Eq. 44 .
Higher-order corrections to wave functions and

energies for a system containing degenerate or-
bitals can be developed in a similar manner: To
obtain the n-th-order expression in perturbation
theory, first, the corrections to energies are com-
puted, using corrections to wave functions up to

Ž .the n y 1 -th order. Next, the corrections to non-
degenerate wave functions are calculated from the

w Ž . Ž .xn-th-order master equation see Eqs. 30 ] 32 . The
peculiarity of the degenerate theory is in deriving
the n-th-order coefficient of mixing of one degen-

Ž .erate orbital into another from the n q 1 -th-order
master equation. Diagonal self-correction terms are
calculated at the very end, in a similar manner or
both nondegenerate and degenerate orbitals.
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Intermolecular Perturbation:
Homonuclear Diatomic Molecules

Perhaps one of the simplest examples showing
the utility of the degenerate perturbation method
is that of homonuclear diatomic molecules, for
example, N . Within a PMO approach, the MOs of2
a diatomic molecule can be constructed from

Ž .atomic orbitals of each atom, the large perturba-
tion is the interatomic interaction. Defining the
z-axis as the internuclear axis, the basis orbitals

Ž . Ž .naturally separate into s s, p and p p , pz x y
w xtypes 2 . Here, let us consider just the more inter-

esting s-type interaction, in which both s and p
orbitals participate in MO formation, and, thus,
s]p mixing occurs. To proceed, we first obtain the
correct zeroth-order wave functions in each degen-
erate set of s and p orbitals and next consider
higher-order perturbation terms for wave-function
correction. The higher-order perturbational terms
will describe interactions between the zeroth-order

Žwave functions of different types of orbitals i.e.,
. Žs]p as well as of the same types of orbitals i.e.,

.s]s and p]p . Since the essential qualitative as-
pects of these interactions are contained in first-
order terms, we limit our discussion in this section
to those.

Let us imagine two interacting atoms, 1 and 2,
Ž .each having two orbitals, x and x Fig. 1 . Thes p

Ž .same types of orbitals s]s or p]p are degenerate
in energy. When the atoms interact, changes will

Žoccur only in off-diagonal Hamiltonian and over-
.lap matrix elements describing the interactions

FIGURE 1. Correct zeroth-order s MOs in N .2

between the atoms. We express those changes by
dH and dS , dH and dS , and dH and dSss ss p p p p s p s p
for interactions between two s’s, two p’s, and one
s and one p orbital, respectively. In Figure 1, we
arrange the atomic orbitals so that all overlap
terms are positive, and, thus, Hamiltonian terms
should be all negative. To consider the zeroth-order
corrections to the s orbitals, we set up the follow-

Ž .ing secular equation using Eq. 49 :

1 0Ž .ye dH y e dSi ss s sss Ž .s 0. 66
0 1Ž .dH y e dS yess s ss i s

Ž .From Eq. 66 , we obtain the first-order energy
corrections:

1 0 Ž .e s dH y e dS - 0, 671 ss s sss

1 Ž 0 . Ž .e s y dH y e dS ) 0. 682 ss s sss

The correct zeroth-order wave functions corre-
sponding to e1 and e1 result from substituting1 2s s

Ž .those terms in Eq. 66 . After normalization using
Ž .Eq. 34 , we get

1
0 Ž . Ž .C s x q x , 691 s1 s2s '2

1
0 Ž . Ž .C s x y x . 702 s1 s2s '2

The correct zeroth-order wave functions are drawn
schematically in Figure 1. It can be seen that C0

1 s

and C0 are orthogonal to each other, the former2 s
Ž .being symmetric bonding and the latter being

Ž .antisymmetric antibonding with respect to a mir-
ror plane at the center perpendicular to the inter-
atomic axis.

Exactly the same procedure is followed to ob-
tain the correct zeroth-order wave functions for p
orbitals and their corresponding first-order
energy-correction terms. To summarize:

1 0 Ž .e s dH y e dS - 0, 711 p p p p pp

1 0 Ž .e s y dH y e dS ) 0, 72Ž .2 p p p p pp

1
0 Ž . Ž .C s x q x , 731 p1 p2p '2

1
0 Ž . Ž .C s x y x . 742 p1 p2p '2
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The symmetry properties of the correct zeroth-
order wave functions from p orbitals, C0 and C0 ,1 2p p

Žare exactly the same as those from s orbitals Fig.
.1 . All this is pretty much as one would expect in a

qualitative treatment of diatomic formation.
Now, we consider the first-order contribution to

each zeroth-order wave function and the corre-
Ž .sponding second-order energy correction. For this

purpose, all matrix elements are calculated by
Ž . Ž . Ž . Ž . Ž .putting Eqs. 69 , 70 , 73 , and 74 into Eq. 15 :

˜ ˜ Ž .S s yS s dS , 751 1 2 2 sss s s s

˜ ˜ Ž .D s yD s dH , 761 1 2 2 sss s s s

˜ ˜ Ž .S s yS s dS , 771 1 2 2 p pp p p p

˜ ˜ Ž .D s yD s dH , 781 1 2 2 p pp p p p

˜ ˜ Ž .S s yS s dS , 791 1 2 2 s ps p s p

˜ ˜ Ž .D s yD s dH . 801 1 2 2 s ps p s p

Due to the symmetry properties of the zeroth-order
wave functions, all the other terms are zero. One
immediate consequence of this will be that there is
no contribution to each wave function from its
paired zeroth-order wave function. This can be

Ž .seen by examining Eq. 58 , where all matrix ele-
ments are zero in this particular case.

The self-contribution terms are obtained from
Ž . Ž . Ž .Eqs. 75 , 77 , and 41 :

1
1 Ž .t s y dS , 811 1 sss s 2

1
1 Ž .t s dS , 822 2 sss s 2

1
1 Ž .t s y dS , 831 1 p pp p 2

1
1 Ž .t s dS . 842 2 p pp p 2

Ž . Ž .The negative signs in Eqs. 81 and 83 means that
the self-contribution terms actually reduce the size
of the coefficients of the orbitals in C0 and C0 .1 1s p

The opposite holds for C0 and C0 .2 2s p

Now, we consider the first-order contributions
to the wave functions. These come from the inter-

Ž 0 0 . Ž 0 0 .action between C , C and C , C , that is,1 2 1 2s s p p

between two sets of the degenerate pairs. By sub-
Ž . Ž . Ž .stituting Eqs. 79 and 80 into Eq. 52 , the first-

order coefficients are calculated as

dH y e0 dSs p s s p1 1 Ž .t s yt s , 851 1 2 2 0 0p s p s e y es p

dH y e0 dSs p p s p1 1 Ž .t s yt s . 861 1 2 2 0 0s p s p e y ep s

Since e0 - e0, t1 and t1 are positive, while thes p 1 1 2 2p s s p

opposite sign follows for t1 and t1 .1 1 2 2s p p s

Figure 2 shows the perturbed wave functions,
whose shapes were drastically changed due to s]p
mixing through the first-order orbital corrections.
The bonding and antibonding characters of C1 s

and C , respectively, are enhanced by s]p mixing.2 p

However, the two MOs in the middle, C and2 s

C , became approximately nonbonding. It should1 p

be noted that these are schematic drawings, not
contour diagrams, of the MOs.

As mentioned earlier, the first-order corrections
to wave functions are reflected in the second-order
corrections in energies. Substitution of all pertur-

Ž .bation terms obtained above into Eq. 62 yields
the following:

e2 s e2
1 s 2 s

20dH y e dSŽ .s p s s p 0Ž .s y dH y e dS dS ,ss s ss ss0 0e y es p

Ž .87

e2 s e2
1 p 2 p

20dH y e dSŽ .s p s s ps y 0 0e y es p

0 Ž .y dH y e dS dS . 88Ž .p p p p p p p

In all the second-order energy expressions above,
the second terms are from the self-contributions
and they are all positive. Therefore, the first-order
self-contributions in wave functions destabilize the
original zeroth-order wave functions. This is con-
sistent with the fact that the explicit inclusion of
overlap actually raises the energies of bonding and

w xantibonding MOs 10]12 . Meanwhile, the first
Ž . Ž .terms in Eqs. 87 and 88 are negative and posi-

tive, respectively. This means that s]p mixing
through first-order perturbation in wave functions
stabilizes the low-lying s orbitals and destabilizes

Ž .the high-lying p orbitals Fig. 2 .
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FIGURE 2. The s MOs in N , with mixing through first2
order included.

Geometry Perturbation: A Sliding
Distortion of an H Triangle3

In this section, we demonstrate that PMO the-
ory is not only a tool for qualitative analysis but
may provide quantitative results if needed. Of
course, we do not expect perturbation theory to
perform better than the underlying theory which it

Žattempts to model in this case the extended Huckel¨
.model .

The MOs of a hypothetical Hy molecule are3
Ž .depicted below see 1 . In this molecule, there are

two degenerate orbitals, MO2 and MO3, filled
with two unpaired electrons. One would expect a
Jahn]Teller-type distortion to occur. The distortion

Ž .that we chose to consider see 2 is not a normal
mode of the H molecule but a simple horizontal3
sliding motion of the H3 atom. Other distortions of
the Hy molecule may be analyzed in a similar3
manner.

The sliding motion of the H3 atom produces
two perturbations in the atomic basis set. As a
result of H3—H1 bond elongation, its correspond-
ing overlap integral diminishes, along with the
corresponding Hamiltonian matrix. The H3—H2
bond gets shorter, which induces opposite changes
in the overlap and Hamiltnoian matrix elements.

After calculating the changes in the overlap and
Hamiltonian matrix elements in the atomic basis, a
transformation is carried out to the molecular basis

Ž . Ž .according to Eqs. 14 and 15 . It turns out that the
original degenerate orbitals MO2 and MO3 are not

the correct zeroth-order wave functions for this
perturbation. To find those, a two-by-two secular

Ž .equation is set up, as suggested by Eq. 49 . Calcu-
lated correct zeroth-order degenerate MOs are in-
dicated in Table I. Since MO1 is nondegenerate,
it has the correct zeroth-order form from the
beginning.

As may be inferred from Table I, just getting the
correct zeroth-order degenerate orbitals MO2 and
MO3 captures the largest part of the wave-func-
tion change during the sliding distortion. Quanti-
tative agreement with the exact solution is ob-
tained when first- and second-order corrections are
computed using the formalism developed in this
article. For instance, there is a first-order mixing of
degenerate MO3 into degenerate MO2 through
nondegenerate MO1. When corrections up to sec-
ond-order are considered, the atomic orbital coeffi-
cients of the MOs computed from perturbation
theory agree to two significant figures with the full
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TABLE I
A sliding distortion of an H perfect triangle as3
described in the text; the entries give the indicated
AO coefficients in the perturbative expansions for
( ) ( ) ( )a MO1, b MO2, and c MO3.

AO1 AO2 AO3

( )a MO1
0< : ( )C initial 0.4148 0.4148 0.41481
0< : ( )C new 0.4148 0.4148 0.41481
0 1< : < :C + C 0.3963 0.4384 0.41431 1
0 1 2< : < : < :C + C + C 0.3960 0.4361 0.41501 1 1

< :C computed 0.3948 0.4372 0.41501
( )b MO2

0< : ( )C initial 0.5601 0.5601 y1.12032
0< : ( )C new 1.0688 y0.2439 y0.82502
0 1< : < :C + C 0.9963 y0.1954 y0.74062 2
0 1 2< : < : < :C + C + C 1.0080 y0.1987 y0.75012 2 2

< :C computed 1.0065 y0.1979 y0.74892
( )c MO3

0< : ( )C initial y0.9702 0.9702 0.00003
0< : ( )C new y0.3356 1.0934 y0.75793
0 1< : < :C + C y0.3932 1.1469 y0.83203 3
0 1 2< : < : < :C + C + C y0.3972 1.1554 y0.83913 3 3

< :C computed y0.3977 1.1567 y0.84033

exact extended Huckel calculations. MOs for the¨
distorted molecule are drawn in 3. It is remarkable
that even for such large changes in the shapes of
MOs perturbation theory provides quantitative
results.

The energies of the MOs were calculate accord-
Ž . Ž . Ž . Ž . Ž .ing to Eqs. 39 , 42 , 51 , 62 , and 63 . The total

energy of the Hy molecule is lowered by y5.433
eV during the sliding distortion, that is, the distor-
tion is stabilizing. The largest part of this energy is
contributed by the first-order energy correction to
MO2, which actually overestimates the stabiliza-

Ž .tion by 1.0 eV for two electrons . The second-order
correction to the energy of MO2 is essential for

TABLE II
Distortion of a H perfect triangle as described in3
the text; perturbative expansion for energies.

( )Energies eV MO1 MO2 MO3

0e y18.5357 y4.5988 y4.5988
0 1e + e y18.4980 y7.8411 y1.8629
0 1 2e + e + e y18.5044 y7.2605 y1.4189

e computed y18.5040 y7.3469 y1.3366

producing reasonable agreement with this MO ex-
Ž .act energy see Table II .

Finally, we note that the zeroth-order mixing of
the degenerate orbitals MO2 and MO3 predeter-
mines the shapes of these MOs. Consider MO2, for
example. The H3 orbital in the undistorted
molecule has equal antibonding interactions with

Ž .orbitals H1 and H2 see 1 . In the correct zeroth-
order MO2, however, the H3—H1 bond remains
antibonding while the H3—H2 bond becomes

Ž .bonding see 3 . When the distortion occurs, the
elongation of the H3—H1 bond leads to a weaken-
ing of the H3—H1 antibonding interactions. Con-
versely, the shortening of the H3—H2 bond leads
to strengthening of H3—H2 bonding interactions.
Therefore, the correct zeroth-order MO2 is set up
for the maximum stabilization during the distor-
tion, as is indeed observed. On the contrary, the

Ž .nodal properties of correct zeroth-order MO3 3
anticipate maximum destabilization during the
distortion: H3—H1 bonding interactions are di-
minished and H3—H2 antibonding interactions
enhanced.

Conclusions

Prior to this work, the apparatus of PMO theory
for degenerate systems was not fully developed. In
particular, we were not able to find in the litera-
ture expressions for evaluating the first- and
higher-order corrections to wave functions as well
as the second- and higher-order corrections to en-
ergies of degenerate MOs. It was also not clear
how to incorporate degenerate perturbation theory
into the more general framework of nondegenerate
perturbation theory.

In the first part of this article, we set up the
master equations for deriving perturbative expres-
sions up to the second order. If complex wave
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functions are used, as, for instance, one must do
for crystal orbitals in the solid state, we suggested
that all diagonal corrections to MOs be kept real.
In that case, no ambiguity remains in determining
the phases of corrections to wave functions.

We rederived the familiar perturbation theory
for nondegenerate systems and corrected a small
number of misprints found in the literature expres-
sions. For the degenerate systems, we developed a
systematic way of determining higher-order cor-
rections to energies and wave functions. By the
way that we constructed the theory, the degener-
ate system is naturally incorporated into a larger
nondegenerate]degenerate composite system. One
of the peculiarities of degenerate perturbation the-
ory is that the first-order corrections to wave func-
tions look similar to second-order corrections in
the nondegenerate case.

Finally, we tested the perturbation theory for-
malism developed on two cases: N molecule for-2

Žmation out of two N atoms an intermolecular
. yperturbation and a sliding distortion of an H 3

Ž .triangle a geometry perturbation . We demon-
strated that degenerate perturbation theory may
be applied both qualitatively as well as in quanti-
tative calculations.
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