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We present a general one-electron perturbation theoretic formalism for the interaction of 
discrete molecules or a translationally periodic array of molecules with a surface. The 
approach uses a Green's function formalism, a perturbation expansion and a technique of 
calculating the imaginary parts oftraces over matrix products. The methodology, applicable to 
both Huckel and extended Huckel calculations, introduces projected Green's functions which 
serve as natural indices for the reactivity, inherent and mutual, of different surface sites. 

Molecules reacting, a molecule interacting with a sur­
face-these are systems quite naturally made up of two or 
more pieces or subsystems. We know their orbitals when 
they are separate, perhaps approximately. And we want to 
know their orbitals as they interact, the energetics and orien­
tation of their reaction. 

The natural language for the analysis of chemical reac­
tion, the interaction of two chemical subsystems, is perturba­
tion theory. The zeroth-order wave functions, presumably, if 
imperfectly, known, are those of the separate or isolated 
molecules. The perturbation is their interaction, weak or 
strong. 

Chemisorption should be analyzed, in principle, in a 
many-electron framework. In practice, a one-electron per­
turbation theory approach is often adequate, qualitatively or 
semiquantitatively. More than that, a one-electron perturba­
tion theoretic approach lends itself to an analysis of trends as 
a function of atom or ligand electronegativity, donor or ac­
ceptor character, etc., i.e., nothing more or less than a chemi­
cal analysis. Witness the remarkable success offrontier orbi­
tal theory··2 which is just the implementation of a simplified 
one-electron perturbation theoretic approach3

•
4 to chemical 

reactivity. 
In recent times one of us (RH) has worked extensively 

on extended systems; one-, two-, and three-dimensional ma­
terials. One of the foci of interest has been the chemisorption 
and reaction of molecules on surfaces. In the course of this 
works it became apparent that a qualitative perturbation 
approach to extended systems was very much needed. 

What we present here then is a systematic perturbation­
al treatment of extended chemical systems, considered as 
consisting of a pair of interacting subsystems. The sporadic, 
though fruitful, attempts to use this approach in the recent 
literature6

•
7 operate with the second-order energy correc­

tion known from molecular quantum chemistry. Such an 
extrapolation is obvious for one-dimensional structures. 8 

For the extended systems of higher dimensionality, due to 
the degeneracy of energy levels, the situation is less clear. 
The problem is important, and it certainly merits a careful 
derivation. The formulas for the interaction energy in an 
extended system we obtain here, although having a familiar 
physical (or chemical) interpretation, possess an advantage 
of being directly related to widely available band structure 

calculations. Some novel qualitative concepts also arise in 
our treatment, such as new surface reactivity indices for 
chemisorption and a new phenomenological approach based 
on the modeling of the energy dependence of the density of 
states (DOS). 

The application of these concepts in a qualitative theory 
of chemisorption heats seems promising. For instance, the 
main problem here is an adequate account of the energy de­
pendence of an interaction matrix element between an adsor­
bate molecule and a surface. The reported attempts to over­
come this difficulty6.7 neglect the specific features of a real 
surface band structure. This problem is, however, solved in 
our treatment. The application to specific chemical prob­
lems will follow in future papers. 

I. THE GENERAL DOS EXPANSION 

We consider the Hamiltonian 

H=Ho + V, (1.1 ) 

where Ho is a zero-order Hamiltonian and V is a perturba­
tion. We assume that Ho always possesses translational sym­
metry. For V two cases will be considered: (a) translational­
Iy symmetrical perturbation; (b) local perturbation. 
So we have the Schrodinger equations 

(H-Ei)'J.'i(r) =0, 

(Ho - €; )<Pi (r) = 0, ( 1.2) 

and the corresponding Green's operators 

G(E) 
E+i8-H 

(8 ..... + 0). (1.3 ) 

G (E) _ 1 
o - E 'J;: H. +lu- 0 

The coordinate representation of Go (E) (i.e., the Green's 
function) is 

Go (r,fIE) = I <P r(r~<p; (f) . 
i E + i8 - €i 

( 1.4) 

The zero-order eigenfunctions <Pi ( r) are Bloch Molecular 
Orbitals (MOs). Finally, the usual definition of the DOS9 

will be made 
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( 1.5) 

The perturbation expansion for neE) can be derived 
from the following basic relation: 

neE) - no (E) = _ J.-~ Im{ln det(E + io - H) } . 
1T JE det(E + io - Ho) 

( 1.6) 

This formula has been obtained 10,11 starting from the defini­
tion (1.3) of the Green's function, and using the identity 

lim .1 , = p(_I_,) _ i1TO(X - x'), (1.7) 
0-0 x + 115 - x x - x 

where P stands for the principal part operator. Relation 
(1.6) obviously reduces to 

neE) - no (E) = - J.-~ Im{ln det[1- Go (E) V]}. 
1T JE 

(1.8 ) 

This closed form has been used by Einstein and Schrieffer. 1O 

We extend their treatment by applying the identity 12 

{ 

00 (1)m-1 } 
det (1 + A) = exp m ~ 1 - m tr A m ( 1.9) 

which results in the following perturbation series: 

1 J 00 1 
neE) -no(E) =--Im L -tr[Go(E)Vr· 

1T JE m= 1 m 
( 1.10) 

This formula will serve us as a basis for our subsequent 
considerations. 

II. THE ENERGY AND QUASI MOMENTUM 
REPRESENTATIONS 

We need matrix representation of operators Go (E) and 
V for the trace calculations in Eq. (1.10). Different MO 
representations are available, due to the degeneracy oflevels 
E;. We shall deal with two of them: 

'P;-+IEr) (2.1) 

(E representation), 

(2.2) 

(k representation). 
In Eq. (2.1) the energy E is taken as a main quantum num­
ber, the second number r labeling the states having the same 
energy E; r = r(E). Another, more customary representa­
tion (2.2), takes the reciprocal lattice vector k (the quasimo­
mentum) as the main quantum number, a being a band in­
dex. Either representation (2.1) or (2.2) will be convenient, 
depending on the particular applications. 

The quantities E and k are considered as continuum 
variables, and that is why one should also define the pre­
scriptions for transforming a sum 1:; into integrals over E or 
k. This depends on the normalization accepted for contin­
uum basis functions. In the E representation it is convenient 
to work with the scattering theory prescription: 13 

(ErIE'r') = orro(E - E'). (2.3 ) 

Then 

(2.4) 

The conventional basis functions for k representation are 
Bloch MOs normalized to unity: 

(kalk/3) = oafJ 

(kalk'/3) =0 (k'=I=k). (2.5) 

Then, denoting the total volume as 0, we obtain a standard 
relation 14 

1 f dk 
o ~ -+ (21T)P ~, (2.6) 

where p = 2 or 3 for the surface and bulk cases, respectively. 
Let Ea (k) be the zeroth approximation band energy 

function. We denote by k = ka (E) the multivalued quantity 
satisfying the equation Ea (k) = E. Then the following iden­
tity is valid: 

f 
dk o --L o[ k - ka (E)] = no(E). 

(21T)P a 
(2.7) 

Finally, the interrelation between E and k representations is 
given by 

L (Erl = 0 f ~ L o[ k - ka (E)] (kal· (2.8) 
r(E) (21T)P a 

III. ENERGY REPRESENTATION 

Formula (1.10) supplies us with the expansion of the 
DOS in terms of powers of V: 

neE) - no(E) = n(\)(E) + n(2)(E) +.... (3.1) 

Let us consider the two leading terms of this expansion. 
First order: 

n(\)(E) =J.-~lmfdE' L (E'rIVIE'r) . 
1T JE r(E') E + io - E' 

The 1m operation is performed according to Eq. (1.7). So 
we obtain 

n(\)(E) = - ~ L (Erl VIEr). 
JE r(E) 

(3.2) 

Second order: The evaluation of the corresponding term 
ofEq. (1.10) again using (1.7) for the 1m calculation, gives 

n(2)(E) = -~ L fdE' L I (ErIVIE's) 12 (3.3) 
JE r(E) s(E') E - E' 

where f means the Cauchy principal value of the integral. 
The case important for what follows implies vanishing 

of all interaction matrix elements, including diagonal ones, 
between degenerate Bloch functions: 

(Erl VIEs) = o. 
This simplifies the expansion terms to 

n(\)(E) = 0, 

(3.4 ) 

n(2)(E) = -~{L IdE' L I(ErIVIE:S)1
2

}. 
JE r(E) s(E') E - E 

(3.5) 
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Now let us consider the case when matrix elements 
(Erl VIE's) are r,s independent: 

(Erl VIE's) = (E I VIE'). (3.6) 

It is then possible to change the normalization of the basis 
functions and pass from the 8-function normalized eigen­
functions IEr) to functions IEr), normalized to unity ac­
cording to 

(EriEs) = 8rs , 

(EriE's) = 0 (E'oj=E). (3.7) 

As is readily seen from the comparison with Eq (2.5), the 
functions IEr) so defined differ from functions Ika) only by 
the choice of the quantum numbers labeling them. 

In this case we can make formal changes in relation 
(2.8) according to: 

(Erl- (E I 
8[ k - ka (E)] (kal-8[ k - ka (E)] (E I. 

Thus we obtain, by combining Eqs. (2.7) and (2.8), 

L L I(ErIVIE's)1
2 

= I(EIVIE')1 2 
no(E)no(E'), 

r(E) s(E') E - E' E - E' 

where (E IVIE') stands for (ErIVIE's) according to Eq. 
(3.6). With this new notation (3.5) is transformed into 

n(2)(E) = -~{n (E)fdE'n (E') I(EIVIE')1
2
}. 

aE 0 0 E-E' 
(3.8) 

It is then expedient to transform the general expression 
(3.3) into the form of Eq. (3.8), defining a quantity 

R(E,E') = 1 L L I (Er IVIE's)1 2. 
no (E)no (E') r(E) s(E') 

(3.9) 

This is nothing else but an averaged squared absolute value 
of the interaction matrix element. With this definition (3.3) 
converts into 

n(2)(E) = - ~ {n (E) J dE'n (E') R(E,E')} . 
aE 0 0 E-E' 

(3.10) 

The meaning of this transformation is that the integral 
in curly brackets is expected to depend on E much more 
smoothly than no (E) does. That is why a reasonable approx­
imation may be 

n(2)(E) ~ _ {fdE'n (E') R(E,E')} dno (E) . 
o E-E' dE 

( 3.11) 

When the matrix elements are r,s independent we obtain 
R(E,E') = I(EIVIE')1 2

• 

An example of using approximate relation (3.11) is giv­
en in the Appendix A. 

IV. QUASI MOMENTUM REPRESENTATION 

We start with the case when both operators Ho and V 
are characterized by translational symmetry. Then the ma­
trices of operators Go (E) and V consist of diagonal blocks, 
the blocks of Go (E), being diagonal by themselves: 

(kalGo (E) Ik'fj') = (kalV Ik'fj') = 0 (k oj=k') 

(kalGo (E) Ikfj') = Gaa (E,k)8ap , 

(kalVlkfj') = Vap(k), 

where 

G (Ek)= 1 
aa' E+i8-€a(k) 

(4.1 ) 

(4.2) 

(4.3) 

That is why the trace in Eq. (1.10) becomes a sum over 
traces ofindividual blocks. According to Eq. (2.6) we obtain 

1 
- [nee) - no(E)] 
n 

1 a 00 1 J dk =--Im L - --tr[Go(E,k)V(k)]m, 
l' aE m= 1 m (21')P 

(4.4) 

where Go (E,k) and V(k) are the block submatrices built of 
elements (4.2) and (4.3). 

Now we can invoke the invariance of the trace operation 
under a unitary basis transformation, and pass on to the 
Bloch atomic orbital (AO) basis. We consider here a simple 
Hiickel model with an orthogonal AO basis. Then the form 
of V can be explicitly displayed. This is illustrated by a spe­
cial case when the zeroeth approximation is a combination of 
a pair of noninteracting sublattices "A" and "B". Their in­
teraction is assumed to generate only intersublattice matrix 
elements, leaving unchanged intrasublattice ones. So the 
structure of the matrices in the Bloch AO basis will be 

Go (E,k) = t~A I ;B1;V(k) = (;t I ~1' (4.5) 

where "t" means the Hermitian conjugate. Using the special 
block structure of matrices (4.5), wereduceEq. (4.4) to the 
final form 

1 n [n(E) - no (E)] 

=1-~ f 1-J~tr[GAfj'GBfj't]m. 
l' aE m= 1 m (21')P 

(4.6) 

The k representation is most convenient for practical 
explicit calculations. The general prescription for calculat­
ing the Green's matrix Go (E,k) in the Bloch AO basis is the 
following: Let Ho (k) be a Hamiltonian matrix, in this basis 
diagonalized by a unitary matrix C(k): 

Ct(k)Ho (k)C(k) = €(k), (4.7) 

where €(k) is a diagonal matrix of the band energies. Then 

Go (E,k) = C(k) [(E + f8)1 - €(k)] -ICt(k). (4.8) 

V. ENERGY CALCULATIONS 

The perturbational correction to the total energy den­
sity is calculated as 

1 
aE = - (Etot - Eo) 

n 
2 [JEF JEF ] = n _ 00 En (E)dE - _ 00 Eno (E)dE , (5.1) 
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where Ep and €p are Fermi levels for a perturbed and an 
unperturbed system. The closed expression following from 
Eq. (5.1) was derived by Einstein and Schrieffer: \0 

2 f€F I:l.E = - - 1m In det[ 1 - Go (E) V]dE. (5.2) 1Tn - oo 
We substitute Eq. (1.9) into Eq. (5.2) to obtain the general 
perturbation expansion 

I:l.E= -~Im f -.!..f€F tr[Go(E)V]mdE.(5.3) 
1Tn m=l m -oo 

Alternatively one may obtain the same expression start­
ing from the basic formula:\O,15 

I:l.E = ~ {f~Foo (E - €p )[n(E) - no (E) ]dE} . (5.4) 

Substitution of [n(E) - no (E)] from Eq. (1.10) and inte­
grating by parts again gives Eq. (5.3). 

Now we return to a special type of perturbation matrix, 
as given by Eq. (4.5), for which the first-order correction 
vanishes, and write out the second-order energy correction. 

A. Energy representation 

If we use formula (3.10) in (5.4) the result is 

2 f€F fOO 
I:l.E = n _ oo no (E) _ oc dE' no (E') 

X R(E - E') dE dE'. 
E-E' 

(5.5 ) 

We now observe that the integrand in Eq. (5.5) is anti­
symmetric under the permutation of E and E '. This results in 
vanishing of the part of Eq. (5.5) corresponding to symmet­
ricallimits 

fFoo fFoo dEdE'("') =0. 

That is why the final result is 

I:l.E=2:..-f€F no(E)dE roo no(E')dE' R(E,E',> . 
n - oo J€F E- E 

(5.6) 

It should be noted that the same result (5.6) is valid 
without invoking approximation (3.5) as the second-order 
energy term. Indeed, in this case Eq. (5.5) becomes the sec­
ond-order correction provided the second integral is substi­
tuted by its principal part 

(fOCoc ~f)· 
The following reasoning again gives Eq. (5.6). 

B. Quasimomentum representation 

If we use Eq. (4.4) in Eq. (5.4), then integration by 
parts yields 

1 f€F f dk I:l.E= --1m dE --tr[Go(E,k)V(k)]2. 
1T - oo (21T)P 

(5.7) 

Let us calculate the trace using the Bloch MO basis: 

X------
E + i8 - €p(k) 

So only Green's functions should be considered as complex 
quantities when calculating "1m." This is a general result, 
valid for any perturbational order m in the case V is Hermi­
tian (see also Appendix B). After using Eq. (1.7) we obtain 

1m tr[Go(E,k)V(k)]2 = -21TI8[E-€a(k)] 
a,p 

xP l(ka lVlk/3W . 
€a(k)-€p(k) 

Integration ofEq. (5.7) now gives 

where 1J is the Heaviside step function. 
At this stage we consider a situation when one of sublat­

tices is formed by noninteracting subsystems having a dis­
crete spectrum. This corresponds roughly to the case of ad­
sorption on a surface at low coverage. The sums are 
subdivided as 

I ~ I+ I, 
a (/3) ;U) a(p) 

where iJ correspond to discrete k-independent levels with 
energies €;, €j' whereas a,/3now count only true bands of the 
substrate surface. Since we have assumed that 
(il Vli) = (ak 1 VI/3k) = 0, Eq. (5.8) reduces to 

Formula (5.9) has a simple interpretation as 

{

sum of shifts of occupied discrete levels } 

!I:l.E = due to their interaction with an unoccupied 

part of the band spectrum 

{

sum of shifts of unoccupied discrete leVelS} 
- due to their interaction with an occupied . 

part of the band spectrum 

This result is often used in qualitative theories of adsorption, 
being derived as an intuitive extrapolation of the expression 
for the second-order interaction energy, well known from 
molecular quantum chemistry. It is derived here directly 
from band theory. It could be also obtained in the energy 
representation if the DOS's no (E) and no (E') in Eq. (5.6) 
were subdivided into discrete and continuum parts. 
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VI. THE MODEL OF ADSORPTION WITHOUT IMPOSED 
SYMMETRY 

For the case of a single molecule adsorbed on a surface 
we start from Eq. (5.3), considering Go (E) as a Green's 
operator for a combined system built of the noninteracting 
molecule and the surface. Operator V denotes a localized 
interaction. We use now an AO basis (but not a Bloch AO 
basis!) for the representation of operators Go and V. The 
block structure of the corresponding matrices is 

Go (E) = (G
O

M 

:};); V= (~ ~). (6.1) 

Here G M and G}; are the Green's matrices of isolated mole­
cule and surface (in the AO basis) and v is an interaction 
matrix, which is real in the present case. 

The second order offormula (5.3) gives 

1 f€F tiE= --1m tr[Go(E)VfdE 
1TO - '" 

(6.2) 

The calculation (evaluation of "1m") proceeds from 
this point in the manner described in Sec. V. 

The following notations are used below: 
(a) Ix r ), Ix s )-AOs of the adsorbate molecule; 

Ix" (R) ), Ix u (R ') )-AOs of the surface. 
(b) i-the indices labeling MOs ofthe molecule: 

Ii) = L IXr)C,i; 
r 

Ei being the corresponding energy levels. 
(c) The Bloch MOs of an isolated surface are 

Ika) =_I-L IXv(R»eik'Cua(k), (6.3) 
.IN v,R 

where N is the number of unit cells in the surface. 
(d) V rv = Vrv = v~, = Vv,-the real interaction matrix 

elements of matrices v and vt : 

vrv(R) = <x,IVIXv(R» = Vrv(R), 

v~,(R) = <Xv(R)lVlx,) = Vv,(R). 

(e)G ,,--;; (E,R - R ') 

= ~J~.l [C (k)C* (k)eik(R-R') 
~ (21T)2 2 "a va 

+ Cva(k)C:a(k)eik(R'-R)] 

'11 [EF - Ea (k)] 
X , E>Ep; 

E-Ea(k) 

G ,,~(E,R - R') 

= ~J~.l [C (k)C* (k)eik(R-R,) 
~ (21T)2 2 "a va 

+ Cua(k)C:a(k)eik(R'-R)] 

'11 [Ea(k) - Ep] 
X ; E<Ep. 

E - Ea (k) 

(6.4 ) 

(6.5) 

The resulting expression, calculated starting from Eq. (6.2), 
is 

X G:" (Ei,R - R') - L L L CriCsY,,, (R) 
i rs "R 

(€j>EF) uR' 

X Vsv (R ')G ,,--;; (Ei,R - R')}. (6.6) 

It is easy to show that expressions (5.9) and (6.6) are 
the same, with the only difference being the factor N - 1. 

This appears because we dealt with a single molecule in this 
section, whereas N molecules were adsorbed according to 
the derivation of Sec. V. This means that in the second order 
of perturbation there is no through-surface interaction 
between adsorbate molecules. This interaction appears only 
in the next expansion term ofEq. (5.3), which corresponds 
to the fourth order of perturbation (_ V4). 

According to Eq. (6.5) the quantity G,,~ (E,O) is a mea­
sure of the affinity of surface site p,R towards a donor level 
(doubly occupied) with energy E < EF . The quantity 
[ - GJ.L" (E,O) ] measures the same towards an acceptor lev­
el (unoccupied) with E> Ep. Both quantities are always 
negative, as follows from their definition (6.5). The off-diag­
onal quantities G J.L~ (E,R - R ') measure a combined reacti­
vity of a pair of sites p,R, vR '. We shall call these quantities 
"projected Green's functions" because they perform the pro­
jection of a regular surface Green's function onto subspaces 
of occupied (G - ) and unoccupied (G + ) surface MOs. 

VII. RELATION BETWEEN LOCAL DOS'S AND 
PROJECTED GREEN'S FUNCTIONS 

We define the local DOS matrix of a surface 
'TJ J.LV (E,R - R ') by the relation 

'TJJ.LU (E,R - R') 

=~ n"v(E,R -R') 

= ~ J~.l [C (k)C* (k)eik(R-R') 
~ (21T)2 2 a" av 

+ Cav (k)C!" (k)eik(R' - R) ]15(E - Ea (k». 
(7.1) 

Then we consider the surface Green's operator [see Eq. 
(6.1)] G};(E) = (E + il5 - H};) -1, where H}; is the sur­
face Hamiltonian, and define its matrix elements as in (6.5) 
but without the projecting '11 functions. According to Eq. 
( 1.7) the imaginary parts of these matrix elements are the 
quantities (7,1) times ( - 1T). We can additionally utilize 
the Kramers-Kronig relations [13], stating that 

Re G;v(E,R - R') 

If'" ImG};(E'R-R') = __ dE' J.LU , . 
1T -'" E'-E 

Therefore, 

Re G (E R - R') = dE' 'TJ"v ,- , f'" (E'R R ') 

J.Lv , _ '" E' - E 
(7.2) 
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Now we define the projected local DOS matrices by 

'TIp.: (E,R - R') 

= ~f~~ [C (k)C· (k)eik(R-R') 
~ (217')2 2 ap. av 

+ Cav (k) C:p. (k)eik(R' - R)] 

Xc5[ E - Ea (k)]t?- [EF - Ea (k)], 

+(E,R-R')=~f~~ 
'TIp.v ~ (217')2 2 

x [Cap. (k)C:v(k)eik(R-R') 

+ Cav(k)C:p. (k)eik(R' - R)] 

Xc5[E-Ea(k)]t?-[Ea(k) -EF ]. 

(7.3 ) 

The same reasoning as that leading to Eq. (7.2) relates them 
to real parts of the projected Green's functions (6.5): 

Re G ± (ER - R') = dE' 'TIp.v ,- . foo ±(E'R R') 

p.v , _ 00 E' - E 
(7.4 ) 

Moreover, since G - is real for E> EF and so is G + for 
E < EF , and since these are the only energy intervals we need, 
according to Eq. (6.5), we can write G p.~ instead ofRe G p.~ 
on the left-hand side of Eq. (7.4). Finally, it is obvious that 

'TI;U (E,R - R ') = 'TIp.v (E,R - R ')t?-(EF - E), 

'TIp.~(E,R - R') = 'TIp.v(E,R - R ')t?-(E - EF ). 

This results in the expressions 

G p.:(E,R - R ') 

f€F 'TI (E'R - R ') = dE'~P._v ___ ' ______ _ 
-00 E'-E 

G+(ER-R')= dE' 'TIp.v ,-J.
OO (E'R R ') 

p.v , €F E' - E 
(7.5) 

Thereby, given the local DOS's (7.1), we can calculate 
projected Green's functions by a simple integration. 

VIII. THE EXTENDED HOCKEL (EH) TREATMENT OF 
ADSORPTION WITHOUT IMPOSED SYMMETRY 

In the EHT case we deal with secular equation: 

HoC = SoCE; ctsoC= I, (8.1) 

where matrices Ho, So, C, and E correspond to the AO repre­
sentations of the zero-order Hamiltonian and overlap, and to 
MO coefficients and energy levels. The total overlap matrix, 
denoted as S, has the following block structure (see Sec. VI): 

S = So + S. (8.2) 

s=~ 
The second-order energy expansion is derived in Appendix 
B. We discuss here its main features. 

The Green matrix Go (E) has the diagional block struc-
ture 

G (E) = f2_AlI 0) 
o \0T'(;i 

and can be expressed in the form of Eq. (4.8) as 

Go (E) = C(E + ic5 - E) - Ict. 

(8.3 ) 

(8.4 ) 

The inclusion of overlap results in a renormalization of 
interaction matrix Vaccording to 

W=So-IVS O-
I. (8.5) 

The interaction energy consists of two contributions: 

!:1E = !:1E (\) + !:1E (2) , 

!:1E(1) = - ~ { L L CriCsiA ~ 
n i(Ej < EF) rs 

XL C;a (k)Cva (k)e-ik(R- R')A ;R,VR" (8.6) 
p.R 
vR' 

!:1E (2) = [expression (6.6) with V substituted by W]. 

The notation of Sec. VI is used here. Matrix A, as intro­
duced by (8.6), has the diagonal block structure 

A = (AOM lAo};) 

and is evaluated asA = WsS 0- 1+ S 0- ISW.lts elements are 
explicitly given in Appendix B, Eq. (B 11). 

The projected Green's matrices of Sec. VI needed to 
calculate!:1E(2) are defined as in Eq. (6.5), with the Bloch 
MO coefficients and energies satisfying Eq. (8.1). The same 
is true of the MO coefficients and energies of the adsorbate 
molecule. 

Evaluating matrices W, Eq. (8.5) and A, Eq. (Bll) 
poses no serious problems. Although So corresponds to an 
extended system, V and s are well localized, so the corre­
sponding matrix multiplications converge rapidly. 

The new term !:1E (I) is an exchange repUlsion energy, 
This contribution, typical in perturbation expansions using 
nonorthogonal AOs, is well known in the usual theory of 
intermolecular interactions. 16.17 In application to adsorp­
tion problems it has been mentioned in Ref. 7 and 18, but the 
explicit form (8.6) seems to be a new result. van San ten and 
co-workers have used perturbation-theory based expressions 
that include overlap.7b,c,e,18 

IX. DISCUSSION 

(a) In the present paper we apply the perturbation ex­
pansions (LlO) and (5.3), derived from consideration of 
the Einstein-Schrieffer theory, \0 to a study of the interac­
tion energy in typical extended systems. Operating with the 
basic formula (5.3) involves a rather unusual technique of 
calculating the imaginary part of traces over matrix prod­
ucts. 

In the second order of Hiickel theory the result appears 
as formulas (5.6), (5.9), and (6.6) which are nothing else 
than different continuum reformulations of a trivial second­
order interaction energy, known from molecular quantum 
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chemistry. However, higher-order expressions are readily 
available by the same technique. This may be helpful, for 
instance, in analyzing through-surface interactions of adsor­
bate molecules which, as indicated in Sec. VI, appear only in 
fourth order. The corresponding numerical analysis of 
closed nonperturbational energy expressions for simple 
chemical systems has been reported (see Refs. 10 and 15). 
This preliminary consideration showed an oscillatory be­
havior of the corresponding secondary interactions as a 
function of the relative positions of interacting molecules. 
This is quite understandable from the point of view of the 
present perturbational treatment, because the related energy 
contributions will arise as a combination of Green's func­
tions of type (6.5) with non vanishing factors 
exp[ ± ik(R - R ']. 

(b) Expression (6.6) [or its EH counterpart (8.6) ) can 
serve as a basis for a qualitative adsorption theory when net 
charge distribution effects are negligible. The projected 
Green's functions G I't (E,R - R '), as introduced in Eq. 
(6.5), provide a natural measure of relative reactivity of dif­
ferent surface positions in both Huckel and EH treatments. 
They are closely related to the bond-bond polarizabilities 
introduced by Coulson and Longuet-Higgins.3 These sur­
face reactivity indices can be evaluated for a given surface 
model by conventional techniques of band structure calcula­
tion, with no more computational effort than that needed for 
DOS calculations. An alternative procedure, based on for­
mula (7.5), implies straightforward derivation of projected 
Green's functions from the local DOS matrix. 

(c) A phenomenological treatment of adsorption ener­
gies can be derived starting from formula (7.5), if some sim­
ple model is taken for local DOS's. This kind of approach 
originally used formula (5.4) (with electrostatic interaction 
added) and introduced both n(E) and no (E) in an empiri­
cal manner. 19 In later work a perturbational formula of type 
(5.6) was applied.6 For the adsorption case, with the nota­
tion of Sec. VI this formula reads 

(9.1) 

(the interaction matrix elements are assumed to be r,s-inde­
pendent here). The phenomenology of operating with for­
mula (9.1) needs independent assumptions of the energy 
dependence of two quantities: the DOS no (E'), and the ma­
trix elements (ciIVIE'). However, only modeling of the 
DOS is needed when formula (7.5) is applied, because, ac­
cording to Eq. (6.6), all the energy dependences are cumu­
lated in projected Green's functions. This seems to offer a 
significant conceptual advantage. 

Tentative calculations with a rectangular form of the 
DOS applied in Eq. (7.5) give the same result as reported 
earlier6 and obtained using Eq. (9.1), with an additional 
assumption (Ci I V IE') = const. The coincidence of the re­
sults shows that actually this latter assumption is a math­
ematical consequence of the rectangular DOS model. Hence 
it need not be introduced as a special condition. The further 

development of the present approach with more sophisticat­
ed DOS models seems promising. 
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APPENDIX A: QUALITATIVE DISCUSSION OF THE 
ENERGY SPECTRUM OF A LATTICE BUILT OF A PAIR 
OF WEAKLY INTERACTING SUBLA TTICES 

Let the no (E) spectrum be constituted of a pair of well­
separated sharp peaks n l (E) and n2 (E), [Not to be con­
fused with first- and second-order corrections n(\) and n(2).] 

located around points Eland E2 (Fig. 1): 

no(E) nl(E)+n2 (E) E2 >E1 • (AI) 

This form of spectrum implies that Eq. (3.4) is true. We 
use approximate formula (3.11), neglecting for brevity the 
r,s dependence of interaction matrix elements. In this treat­
ment 

R(E,E') 

E-E' 
I(EIVIE'>j2 

E-E' 

is supposed to be a smooth function of E', E, since the pole at 
E = E' is eliminated by the condition (3.4). All we need to 
evaluate the integral 

JdE'n (E') I(EIVIE'W 
o E-E' 

(A2) 

are the values of the integrand near E = EI . and E = E2 : 

n (E') I(EIVIE'>j2 
o E E' 

near E=Et 

near E=E2 

Inserting this in Eq. (3.11), we obtain 

{

nl (E) - .!!....!!.- nl (E) near E = EI 
2 dE 

n(E)gf b d 
n2 (E) ---n 2 (E) near E=E2 2 dE 

where 

n{E) 

",(E) 
"z(E) 

A ~ 
E 

E, Ez 

(A3) 

(A4) 

FIG. 1. Schematic representation of the zeroth approximation DOS. II, (E) 

and "2 (E) are DOS's of non interacting sublattices. 
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a = I(EI IVIE2W fdE'n2 (E') <0, 
EI -E2 

b= I(E21VIEIWfdE'nl(E'»0. 
E2 -EI 

Now we write expansions of (A4) near EI and E2: 

n l (E) = const - ! kl (E - EI )2; 

dn l 
-= -kl(E-EI ), 
dE 

n2 (E) = const - ! k2 (E - E2 )2; 

dn2 
--= -k2(E-E2)' 
dE 

(A5) 

The shifts of the maxima of the function (A4) are given by 

1 a 
Emax -EI =--<0 (near E=EI ), 

2 2 
1 b 

Emax -E2 =-->0 (near E=E2). (A6) 
2 2 

So the interaction moves apart the band maxima, lowering 
the lower one and raising the higher one. This is the picture 
intuitively expected by analogy with the standard perturba­
tion analysis of discrete molecular systems. 

APPENDIX B: THE EH TREATMENT IN DETAIL 

A. Tensorial formulation of EH theory 

In order to calculate the traces entering the main pertur­
bational formula (5.3), we use tensorial notations which al­
low one to write all equations in a covariant ( = basis inde­
pendent) form.20 The following conventions apply: 

(i) Matrices of operators are associated with covariant 
tensors: Hopv ' Gopv ' Vpv ' 

(ii) Column eigenvectors are associated with contravar­
iant vectors: CP, whereas eigenvalues are considered as sca­
lar numbers (Eo). 

(iii) The covariant and contravariant metric tensors gpv 
and gl'v are associated with the overlap matrix S and its in­
verse S - I, respectively; in the zeroth approximation these 
reduce to So and S 0- I. 

To give an illustration, let us derive secular equation 
(S.l ) using tensorial notations. The covariant version of this 
equation is defined uniquely by the above rules as 

(Bl) 

The metric tensor on the right-hand side is needed in order to 
make both sides of Eq. (B 1 ) vectors of the same (covariant) 
type. The matrix transcription of this equation, as obtained 
according to the above rules, is as needed: 

(B2) 

Applying these rules to derive the covariant prescriptions for 
matrix multiplication and trace evaluation operations, we 
obtain for a pair of matrices A, B: 

Orthogonal tensorial 
basis notation 
AB ApvgVAB Ap 
tr AB ApvgVABAPgPP 

nonorthogonal 
basis 
AS-IB 
tr(AS -IBS -I) 

The first- and second-order energy correction [following 
from general expression (5.3) ] will then be 

!l.E = _~ImfEF {tr[GoS-IVS- I ] 
17'0 - 00 

+ J.- tr[ GoS -I VS -I ]2}dE. (B3) 
2 

B. Utilization of the block structure of matrices 

The overlap matrix is subdivided into intra- and inter­
subsystem parts according to 

S= So + s. (B4) 

We consider s as a perturbation, as well as the interac­
tion matrix V. Then the calculation of S - I with the needed 
accuracy gives 

(B5) 

The matrices needed to calculate Eq. (B3) have the fol­
lowing block structure (see Sec. VI): 

(type I) 

(type II) 

The matrices having diagonal and off-diagonal block 
structures will be further referred to as "type I" and "type 
II" matrices, respectively. The following two symbolic rules 
determine the change of the matrix type under matrix multi­
plication: 

I· II = 11'1 = II, 

1'1 = 11'11 = I, 

tr II = O. 

(B6) 

The latter rule greatly simplifies the trace calculation. Now 
we substitute Eq. (B5) into Eq. (B3) and calculate traces 
using Eq. (B6) to obtain 

tr(GoS -IVS -I) = - trGoA 

!tr( GoS - I VS - 1)2 = !tr( Go W)2, 

where 

A = SO-IVSo ISSo-1 +SO-ISSO-IVSO-
I 

= WsS O-
I +SO-ISW 

W=So-IVS O-
I. 

(B7) 

(BS) 

Note that A and Ware real Hermitian matrices and accord­
ing to Eq. (B6) A is of type I and W is of type II: 

A=t~MI:~1 w=~ 
So the energy is obtained in the form 
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t::.E= t::.E(I) + t::.E(2), 

t::.E(') =~lmJEF dEtr GoA, 
170 - 00 

(B9) 

t::.E (2) = __ 1_ 1m JEF dE tr( Go W)2. 
170 - 00 

Next we use Go in the form (8.4) and calculate 1m following 
the technique of Secs. V and VI. 

C. Calculation of 4£C1) 

As mentioned in Sec. V, the complex nature of C can be 
ignored when calculating 1m. Let us demonstrate how this 
general rule works in the t::.E (I) calculation: 

tr(GoA) = tr{C [(E + i8)I - €] -'CtA} 

= tr{[ (E + i8)I - €] -'CtAC} 

= L I [ctACL. 
; E+ i8-€; 

The matrix ct A C is Hermitian, so its diagonal elements 
are real. Hence only the first factor in l:; should be counted 
as a complex quantity in the 1m calculation. 

In evaluation of t::.E (I) we need block structures: 

C=(CO

M I ~~); €=(~ I;)· 
SO we obtain 

t::.E(1) = _~JEF dEtr[8(E-~)CMtAMcM 
o -00 

+ 8(E - r)C~tA ~C~]. 

Utilization of notations introduced in Sec. VI gives finally 

t::.E(I) = - ~ { L L Cr;Cs;A ~ 
n i(Ej< EF) rs 

I J dk + N~ (217)2-r?" [€F-€a(k)] 

X '" C· (k)C (k)e - ;k(R - R ')A ~ , (BlO) L.. Jla va JlR,vR 
ftR 
DR' 

where 

A ~ = L Wr,ftRSftR,/S O-,~ + S O-r:S',ftR WftR,s 
l,ftR 

= L (Wr,ftRS O-,~ + S o-r: Ws,ftR )S',ftR 
l,ftR 

+ S O-;kAR"SAR"" W"DR') 

with Wgiven by Eq. (B8). 

D. Calculation of AE2) 

(BII) 

We observe that the only difference between t::.E (2) in 
Eq. (B9) and t::.E in (6.2) is the substitution of V by W. 

These latter matrices have the same structure, so we can 
immediately use the result (6.6). 

APPENDIX C: CALCULATION OF PROJECTED GREEN 
FUNCTIONS FOR A ONE-DIMENSIONAL CHAIN AS AN 
EXAMPLE 

For a chain with equal interatomic distances 1 we have two 
parameters: 1 and the corresponding resonance integral /3. 
We take a = €F = O. Then [The Green's functions are mul­
tiplied by N (the number of unit cells) in this Appendix. The 
unnecessary (for this particular case) sUbscripts are also 
omitted: G & (E,n/) ..... G ± (E,n/) ..... G ± (E,n) ] 

G - (E,nl) = 2 (,,12/ cos nkl dk (E>O) 
Jo E - 2/3 cos kl 21T 

G + (E,n/) = 2 i"l/ cos nkl dk (E < 0) 
,,12/ E - 2/3 cos kl 21T 

(el) 

HereR - R I = nl.. We introduce new variablesz = E /21/31 
and n = (R - R ')/1 in terms of which the function G ± 

(z,n = 0) and G ± (z,n = I) are easily evaluated. The result 
for the diagonal functions (n = 0) is 

(2/1/31) G - (z,O) 

_ 1 1 Inl..rr=z+.Jl+Z1 (z>O), 
1T ~l-r ~l-z-~l +z 

(2/1/3I)G + (z,O) 

_ 1 1 Inl..rr=z-.Jl+Z1 (z<O). 
1T ~ 1 - r ..rr=z + .Jl+Z 

_1 1 
I 'if I 
I I 
I I 

- -orctg (oo·l_!_----\--I-----.tn ("'l-:-orctg (",1-­

I 

-lnz 

--~---~--~---~--~z 

FIG. 2. The diagonal and the first off-diagonal projected Green's functions 
for an infinite polyene chain in the Hucke! method. 
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(2/113I)G - (z,O) 

2 1 ~-l =- arctan--
1T ~:l- 1 z + 1 

(2/113I)G + (z,O) 

= _~--l--arctan~ z+ I (z<O). 
1T ~:l- 1 z - I 

The off-diagonal Green's functions (n = I) are 

(2/113I)G - (z,l) = - z(21 113 1 )G - (z,O) +! (z> 0), 

(2/113I)G + (z,l) = - z(21 113 1 )G + (z,O) + 1 (z <0). 

These formulas are illustrated by Fig. 2. The diagonal 
Green's functions are smooth, except for the logarithmic di­
vergence at the Fermi level. The off-diagonal Green's func­
tions have a logarithmically divergent first derivative at the 
Fermi level. The divergency points to a breakdown of the 
perturbation theory and seems to be a general rule. 

Some other general properties of the quantities 
G ± (E,nl) (C. I) can also be established. They follow from 
the fact that the denominator of their integrands is a mono­
tonic function within the integration interval. The conse­
quences are, first, that the absolute value of a Green's func­
tion decreases at fixed E when n increases, and, second, that 
its sign is uniquely determined by the sign which the cosine 
in the numerator takes in the vicinity of Fermi level k = 1T/2. 
There exists also an obvious symmetry relation, 

G + ( - E,nl) = ( _l)n+ IG - (E,nl). 
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