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Summary 

Tight-binding band structure calculations have been performed on both 
the NiAs (hexagonal) and MnP (orthorhombic) structures of vanadium 
sulfide VS. A band folding procedure is used to generate the electronic struc- 
ture of the hexagonal phase in orthorhombic symmetry and allows one to 
understand the reasons for the NiAs to MnP structural distortion as vana- 
dium vacancies in VS are filled. When a critical electron filling of the metal d 
bands is reached, a second-order Jahn-Teller mixing operates to stabilize the 
MnP structure and induces the concomitant formation of metal-metal zig 
zag chains. The resulting “dip” in the density of states at the Fermi level is 
analyzed in conjunction with the experimentally observed changes in con- 
ductivity, and Knight shift measurements. Finally, the computed relative 
stability of the two structures for different metal monosulfides is shown to 
agree qualitatively with the experimental data available. 

1. Introduction 

Establishing logical ties between the structural chemistry and the 
physical properties of solid state materials is often a difficult but challenging 
task. Intimately related is the question of how electronic factors affect and 
even tune the structure of a compound in the solid state. As it turns out, a 
small change in temperature, pressure and/or chemical composition may 
alter drastically the properties, whether chemical or physical, of the material 
under consideration. 

A nice illustration of this delicate balance is provided by vanadium 
monosulfide in the neighborhood of the l-to-l stoichiometry. More than 20 
years have now elapsed since Franzen and Westman [l] first recognized that 
VS, (3~ close to 1) could crystallize in the orthorhombic MnP-type structure. 
At that time this result appeared to conflict with a previous [2] structural 
determination which had concluded that VS adopted the related but more 
symmetrical hexagonal NiAs structure. The reported [ 1] absence of a two- 

*Dedicated, with admiration, to Professor J. D. Corbett on the occasion of his 60th 
birthday. 
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phase region and a more detailed study [3] of VS, (X = 1) led to the re- 
markable conclusion that a subtle change in the stoichiometry actually 
triggers a second-order [4] phase transition between the NiAs and MnP 
forms of VS,. 

A schematic summary of the room-temperature results is presented in 
1; when the ratio V:S reaches a critical value (0.94), the structure undergoes 
a continuous displacive distortion which converts the hexagonal structure to 
the orthorhombic one. As can be deduced from 1 the perfectly stoichio- 
metric material (V:S = 1) is found to crystallize in the MnP structure. 
However, the material “switches” [5] to the NiAs form at about 550 “C. 

I 

NiAs 1 MnP I v/s 
0.94 

1 

Numerous physical measurements were carried out on VS, as a func- 
tion of x and temperature so as to include the transition point: electrical 
conductivity and magnetic susceptibility [5], lattice constants [3, 51 and 
Knight shift [6] measurements. An increase of the density of state (DOS) at 
the Fermi level on going from the MnP to the NiAs structure was proposed 
to account for the observed changes [5]. Furthermore, the use of crystal 
data for different sulfur contents x allows one to plot the valence electron 
concentration (VEC) as a function of 3~; it was shown [3] that the NiAs-to- 
MnP transition occurs when the VEC reaches a critical value (0.3 electrons 
Ap3), suggesting in turn that the morphological change is controlled in 
some way by the electron filling around the Fermi level + Within this 
context, it is important to realize that an increase in V:S means a decrease 
in the formal oxidation state of each vanadium, or equivalently a higher elec- 
tron filling of the metal d bands. To put it in a different way, on reading 1 
from left to right the number of d electrons on each vanadium atom 
increases. 

Previous band calculations have been performed on the hexagonal phase 
of VS and nicely accounted for the electrical and mechanical properties of 
the solid [7, 81. We should also point out here a discussion of the distortion 
in terms of a charge density wave instability, presented by Liu et al. [9]. 

In this work, we aim at an understanding of the actual electronic 
driving force for the phase transition. Our purpose is also to analyze the 
induced alterations in the electronic structure and tie them up with the 
formation of metal-metal zigzag chains (uide infru) and the observed changes 
in physical properties on transition. 

Tight-binding band structure calculations within the extended Hiickel 
framework were carried out for both the NiAs and MnP structures of VS. 
The computational and geometrical details are listed in Appendix A. 
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2. The topology of the NiAs -+ MnP distortion 

The NiAs structure 2 consists of hexagonal close packed layers which 
alternate metal and non-metal atoms. (The space group is P6Jmmc [lo], a = 
3.33 8; c = 5.87 8.) An easy way to visualize the atomic arrangement of 
VS in this phase is to look down the c axis of the three-dimensional struc- 
ture; the picture is that shown in 3a. Starting with a hexagonal layer of 
vanadium atoms at z = 0, one finds at z = + a layer of sulfur atoms, then a 
layer of vanadium at z = i superimposable on that at z = 0 and finally a 
second layer of sulfur atoms at z = 2. The pattern is repeated along the c 

l Ni 

. vat 2:O.O 
L+he* 

t 
&thex 

Pnma 

0 vot z=o.5 

0 s at z=o.25 

3a 
e s at r=0.75 

3b 

direction to generate a three-dimensional stacking of the type AbAcAbAc.. . 
Each sulfur sits at the center of a trigonal prism defined by the vanadium 
atoms which in turn are octahedrally coordinated to 6 sulfurs. The V-S 
distances in this structure are typical of coordination compounds. There is 
no S*-- S bonding, but the V- -- V contacts are reasonably short, indicating 
d band formation with substantial dispersion. The axial V- - l V separation, 
that along E, is shortest at 2.94 A. The V*** V contacts within the hexagonal 
net are longer, 3.33 A. 

The cross-hatched area of 3a defines the projection of the three-dimen- 
sional unit cell on the plane perpendicular to c. Clearly the content of the 
primitive cell is twice the formula unit, i.e. two vanadium and two sulfur 
atoms. For reasons which will become apparent shortly, it is useful to view 
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the Same structure from a different perspective and in particular to double 
the contents of the cell to emphasize the p~udo-orthorhombic symmet~ of 
the structure. Taking the short axis as b (Puma setting), 3b defines the 
orthohexagonal unit cell. The relationship between the translation vectors of 
the two settings is: &th,%x = %hex, bort& = @hex, cOrtheX = aheX + 2&x+ In 
other words, the number of layers perpendicular to the plane of the paper 
does not change [33 and the doubling of the cell volume is brought about 
by the doubling of the area within that plane. The unit cell thereby defined 
contains four atoms of each kind. 

The reason we double the unit cell is that it is then much easier to 
derive the MnP structure from the NiAs one. Let us start from the doubled 
cell defined in 3b and redrawn in 4a. The distortion from NiAs to MnP takes 
4a into 4b, looking down the a axis. We emphasize here the motion (arrows 

4a 4b 

in 4a) within the (b, c) plane since it gives rise to the most drastic changes in 
the structure, However, one should also point out that a slight shift of the 
atoms occurs along the a direction as well; however, the magnitude of the a 
direction shift is only about 15% that of the shift within the (b, c) plane. In 
particular the picture 4b is somewhat idealized since it suggests that a two- 
fold axis is present at c = f . In reality this axis is absent due to the above- 
mentioned displacements along the a axis. If one focuses on a pair of metal 
atoms initially in a kind of eclipsed configuration in 4a, they are now 
separated along c,,% by about 0.7 A, see 4b. One of the remarkable features 
of the distortion is that the overall dimensions of the o~hohex~onal cell are 
basically conserved after the transformation to the orthorhombic structure: 
aort,,ex = 5.87 A, uort = 5.85 A; borthex = 3.33 A, bort = 3.31 A; C,,thex = 
5.77 A, C,,t = 5.83 A. (The values for the orthohexagonal cell are derived 
from the values quoted above: u = 3.33 A, c = 5.87 A [lo]. Those for the 
o~horhombic structure were extracted from ref. 11.) 

Topologically, the primary effect in the NiAs -+ MnP transformation 
[12] may be seen as the rupture of every hexagonal net of metal atoms to 
form zigzag chains, as depicted in 5. Before distortion, the metal-metal 
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contacts are 3.33 A within the net whereas the bond length of each V-V 
bond within the chains is about 2.76 A. Interestingly enough the metal- 
metal distances in the perpendicular direction do not change much, 2.94 A 
versus 3.00 A. 

3. The hexagonal phase 

Figure 1 shows the calculated band structure for VS in the NiAs struc- 
ture. The symmetry lines [13] are labelled according to the nomenclature 
of the insert in the upper right corner of the Fig. 1, which outlines the shape 
of the three-dimensional hexagonal Brillouin zone (BZ). 

Recalling that the cell contains two vanadium and two sulfur atoms, 
one recognizes the six sulfur p bands between -16.1 and -11.0 eV, the s 
bands being buried below -18.0 eV. The 10 metal d bands spread over about 
6 eV. The lowest ones remain relatively flat throughout the zone except 
along r--A, the direction of the short V-V contact. These bands are essen- 
tially V-S non-bonding. The upper bands show some dispersion, un- 
doubtedly via V-S through-bond coupling. The same argument applies for 
some of the sulfur p centered bands. Overall the shape of the band structure 
compares rather favorably with that obtained [7] by Liu and coworkers 
using an ab initio technique. They do observe a little more mixing between 
sulfur and vanadium bands which will translate into a slight difference in the 
charge density distribution. Our calculations point to less covalent character 
in the V-S linkages. 

The DOS curve is shown in Fig. 2 and was computed with the use of 
the special h-points technique. The Fermi level eF falls at -8.15 eV. Notice 
that the d states split roughly into two peaks with the Fermi level lying 
almost in between. All this agrees qualitatively with the photoelectron 
spectrum obtained by Franzen and Sawatzky [14] on Voeg2S and gives 
us some confidence in the relevance of the computations. From Fig. 2 
it is clear that VS should exhibit metallic conductivity and in fact it does. 
Returning to the band structure of Fig. 1, one can see that er sits in the 
middle of relatively flat bands, conferring on VS its magnetic properties 

]5, 151. 
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Fig. 1. The band structure of VS in the NiAs geometry. 

4. The electronics of the distortion 

In order to pin down the electronic driving force for the distortion, 
some “preparative” work is necessary. Specifically the idea is to construct 
the electronic structure of the hexagonal phase in the lower orthorhombic 
symmetry, i.e. prepared for the distortion. 

The band structure of the undistorted phase in orthorhombic 
symmetry may be obtained using a band folding procedure [16] and the 
band structure generated in hexagonal symmetry, i.e. that shown in Fig. 1. 
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I 
Density of States 

Fig. 2. Density of states of VS in the NiAs geometry. 

As noted earlier the orthohexagonal cell has a volume twice that of 
the hexagonal cell. Also, it was mentioned that this doubling comes about 
in the plane perpendicular to the c axis of the hexagonal structure. Thus 
in the following we confine our attention to the two-Dimensions problem 
of generating the band structure of a rectangular lattice from that of a 
hexagonal structure twice as small. Going into reciprocal space this size 
relationship is reversed [17,18] and the BZ of the rectangular lattice is 
contained within that of the hexagonal one, and is twice as small, This is 
shown in 6 where the rectangular BZ is defined by the broken line. The 
area enclosed within the triangle rMK is the irreducible wedge of the 
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hexagonal BZ. The band structure along rM, MK and Kl? was indeed com- 
puted and presented in Fig. 1. The purpose is now to construct the bands 
along I’Y, Y being at the boundary of the rectangular BZ. The choice of this 
specific line is dictated by the fact that the forthcoming distortion occurs 
along this direction in direct space. 

One can clearly use the bands along the rK line but not all the way; 
the section YK belongs to the next rectangular BZ and must be folded back 
to produce the YK’ piece. We have used here both the time reversal sym- 
metry and the translational property existing in reciprocal space. Another 
justification for this procedure is that the plane perpendicular to that of the 
paper and containing the MY line is a symmetry element in reciprocal space. 
Finally the MK line is equivalent to the l?‘K line (rotation by 7r/3) which in 
turn is translated back to I’K’ in the irreducible wedge of the rectangular lat- 
tice. In summary, the bands along I’Y are generated by folding the bands 
along r-K-M of Fig. 1, so that the points I’ and M overlap with each other. An 
obvious consequence of this construction is the number of bands along rY, 
twice the number of those present in Fig. 1. This is hardly surprising, since 
the orthohexagonal cell contains twice as many atoms as the hexagonal one. 

Figure 3 shows the result of applying this procedure for the metal d 
bands in the -10 to -6 eV energy window. Perhaps we should discuss 
briefly here a technical point: on folding, point K emerges as point K’, see 6. 
However, the former, as the end point of the line FK in hexagonal sym- 
metry, requires a zero derivative for all the bands (see Fig. 1). Point K’, how- 
ever, is not a special point in the rectangular BZ, and the bands do not have 
a vanishing derivative at this point, which falls at two-thirds of the rY line 
away from r. 

The band structure of Fig. 3 exhibits a multitude of level crossings. 
However, we can predict which will actually be removed (or transformed 
into avoided crossings) as the geometrical distortion to the MnP structure 5 
is introduced. These “evanescent” crossings are circled in Fig. 3. They are 
easily identified when the bands are labelled according to their properties 
with respect to symmetry elements present in the distorted system, namely a 
2, screw axis and a glide plane. The former propagates the zigzag chain 
whereas the latter takes one such chain into the next one along the ortho- 
rhombic a axis, see 4b. Upon distortion, one also anticipates the splitting of 
the degeneracies at I’, since here the group of the wavevector k goes from 
Dbh to Dzh and the latter excludes irreducible representation of dimension 
greater than one. In contrast, the degeneracies at Y should remain due to the 
non-symmorphic nature of the group of k along this line. 

The crucial features of the band structure shown in Fig. 3 are the 
crossings just below -8.0 eV, extremely close to our Fermi level for VS. 
The NiAs structure is actually observed for a stoichiometry such that eF 
probably lies slightly below these crossings. When vanadium vacancies are 
filled, and the number of d electrons thereby increased, then eF will go up 
and hit one of the two crossings. The structure distorts, the crossings become 
avoided and most of the filled levels are stabilized. 
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Fig. 3. Folded band structure from rMK (Fig. 1) to produce rY in the orthorhombic 
Brillouin zone. 

Figure 4 shows both the band structure of the undistorted system (left) 
and that obtained from a calculation on the distorted one, the MnP phase. 
All the expected features are present: splitting of degeneracies at r‘ and 
avoided crossings. We emphasize the SA-AS pairs (thick lines) because those 
are responsible for the stabilization and the nature of the distortion. It is 
rewarding to focus specifically on the zone edge, point Y. The initially tiny 
gap between the third and fourth degenerate pairs @ and @ is increased 
enormously on distortion. These bands become @ and @ respectively. The 
lowest band, @+a, is much stabilized and is filled. The top band (04 
0) remains basically at the same energy; this is due to the fact that the 
overall mixing involves all the four pairs of symmetry type SA-AS. One may 
visualize this process best by plotting a Walsh diagram along the distortion 
at Y. This is done in Fig. 5. The solid lines correspond to the SA-AS pairs, 
whereas the dashed ones refer to SS-AA pairs. The Fermi level for stoichio- 
metric VS falls somewhere just below -8.0 eV; its exact position depends 
strongly on the accuracy of the calculations and on the particular stoichiom- 
etry under consideration. 
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The SA/AS pairs undergo a typical multi-orbital type interaction with 
the lowest band stabilized, the next two remaining basically unaltered, 
while the top band carries most of the destabilization. Notice also that the 
two SS/AA pairs are also somewhat split in the process, @and@emerging 
as@ and @. 

The energetic driving force for the distortion is a mixing of empty 
bands into filled bands, made allowed by a lowering in symmetry. This is 
reminiscent of a second-order Jahn-Teller effect [ 191, except that in 
the solid the mixing takes place along a full line in reciprocal space, as 
witnessed by the plots of Fig. 4. 

What about the actual geometry of the distortion? To tackle this ques- 
tion one has to take a rather close look at the exact composition of the 
crystal orbitals involved. This is conveniently done at Y, the wavefunction 
there being real. We can furthermore concentrate on orbitals centered on 
pairs of atoms within one hexagonal layer since the second pair of metal 
atoms in the next layer is related to the original pair by the glide plane. 

In 7b are drawn the SA and AS crystal orbitals at Y, corresponding to 
point @ in Fig. 4a. These are mainly d,, in character and degenerate. One is 
bonding within the unit cell (broken lines) whereas strong antibonding exists 
between different unit cells, since we are at the zone edge here. The other 
combination, conversely, is antibonding within the cell but bonding between 
adjacent cells. Orbitals are sketched only on a one-dimensional subset of 
atoms of the hexagonal lattice specified in 7a. Clearly, these bands are 

(b) 
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antisymmetric with respect to the 2-fold axis shown in 7a, present in the 
hexagonal structure. 

The orbitals at point @of Fig. 4(a) are shown in 7c. We have extracted 
the d,z components out of the total wavefunctions. Now the bands are 
symmetric with respect to the Cz axis. On distortion of the hexagonal struc- 
ture to the orthorhombic symmetry, the Cz axis is lost. These two sets of 
bands are thus allowed to mix, since each set consists of an SA and an AS 
band, the symmetry labels referring to the 2i screw and the glide plane. 
Following the usual rules of perturbation theory the upper set (7b) mixes in 
a bonding way into the lower one (7c), to generate two bands with the 
topology outlined in 7d. A net decrease in antibonding and increase in 
bonding ensue and drive the formation of the zigzag chain. The two orbit& 
shown in 7d are obviously degenerate and correspond to those of point @ in 
Fig. 4(b). Notice that a half filling of bands 7d should produce a pairing and 
disrupt the zigzag chain. A related phenomenon occurs in metal mono- 
phosphide structural chemistry [ 201. 

Interestingly enough the break-up of the hexagonal net of vanadium 
atoms displays features similar to cases where a true Peierls distortion takes 
place; in the present situation, one can view the pairing as one taking a two- 
dimensional framework into subsets of one-dimensional lattices. A rigorous 
Peierls distortion occurs at one point of the BZ (the edge) and splits one 
band into two subbands [21]. In contrast, the phase transition in VS, is 
driven by mixing between different bands. 

Returning to Fig. 4, it is apparent that the density of levels around and 
below the -8.0 eV mark changes upon distortion. We confirmed that point 
by a plot of the DOS for both the NiAs and the MnP structures of VS. 

Figure 6 shows the result in the -10 to -6 eV energy range. The 
mixings discussed previously create a “dip” in the DOS curve of the MnP 

-lO.O: 
Density of States 

(a) 

-lO.O- 

(b) 

“MnP” 

Density of States 

Fig. 6. Density of states for the NiAs (left) and MnP (right) structure of VS. The braces 

locate the range of fF in the neighborhood of the l-to-l stoichiometry. 
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geometry just below -8.0 eV. The DOS at the Fermi level is decreased on 
going from the NiAs to the MnP phase of VS,. This conclusion agrees with 
that anticipated by Franzen and Wiegers [5] on the basis of conductivity 
measurements. Similarly a decrease of N(er) on going from the hexagonal 
to the orthorhombic structure could explain the observed [6] decrease in 
Knight shift when the system undergoes the phase transition. 

In this closing section we would like to “feed” more electrons into the 
system and compare the stability of the NiAs and MnP phases as a function 
of the electron count. Within this rigid band model approximation the rela- 
tive stability of the two structures is shown in 8. The horizontal axis counts 

b e” (EHEX-OORT) 

8 

the number of valence electrons per formula unit. Thus N = 10 corresponds 
to TiS, N = 11 to VS, N = 12 to CrS. The vertical axis measures the differ- 
ence in energy per cell between the hexagonal and orthorhombic structures. 
The curve indicates that somewhere in between titanium and vanadium the 
MnP structure should become more stable. Furthermore, moving to the right 
from vanadium the NiAs phase should become more stable again. With the 
formalism of counting each sulfur as S*-, every point on the horizontal 
axis corresponds to a d electron count on the metal. For example a d* 
system (TiS) is predicted to be in the hexagonal structure whereas the d3 
compound (VSi.OO) is more stable in the MnP geometry. Reaching a d4 metal 
atom pushes the NiAs structure back to lower energy relative to its MnP 
counterpart. These results agree well with the experimental information 
available, since TiS and CrS crystallize [22, 231 in the NiAs structure 
whereas VS l.OO adopts the MnP geometry. One can take a further step and 
compute from 8 the critical d electron count which converts the two struc- 
tures: we find d*.*‘. Experimentally the phase transition was initially shown 
to occur for VS,,, which translates into a d2.88 electron configuration for the 
vanadium atom. A more accurate titration study on Ti,Vi _XS demonstrated 
later that d2.34 was closer to reality [ 241. We believe that the agreement with 
our value is good enough, given the approximate nature of the computations. 
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5. Conclusions 

In this contribution we have proposed an electronic reason for the 
phase transition occurring in vanadium monosulfide. The creation of sulfur 
vacancies makes the Fermi level rise up to a critical value where empty and 
filled bands are particularly prone to mix so as to stabilize the structure and 
generate metal-metal zigzag chains. The modification of the density of 
states which ensues can account qualitatively for the observed changes in 
physical properties. The type of distortion at work in VS, turns out to 
govern the structural differences in metal monophosphides as well [ 201. 
In these systems, however, increasing the number of d electrons gives rise to 
a Peierls distortion which eventually breaks the metal-metal chains. A 
detailed report on that topic is in preparation [ 251. 

Acknowledgments 

We would like to acknowledge our gratitude to D. Keszler, R. Wheeler, 
and C. Zheng for numerous enlightening discussions, and to H. F. Franzen 
for his comments. This research was supported by NSF Research Grant DMR 
8217227A02 to the Materials Science Center at Cornell University. W.T. 
acknowledges receipt of a DAAD/NATO postdoctoral fellowship for 1984/ 
85. Thanks are also extended to Cora Eckenroth for the typing and J. 
Jorgensen and E. Fields for skillful execution of the drawings. 

References 

1 H. F. Franzen and S. Westman, Acto Chem. Stand., 17 (1963) 2353. 
2 W. Biltz and A. K&her, Z. Anorg. Allg. Chem., 241 (1939) 324; E. Hoschek and W. 

Klemm, Z. Anorg. A& Chem., 242 (1939) 49. 
3 H. F. Franzen and T. J. Burger, J. Chem. Phys., 49 (1968) 2268. 
4 L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, London, 1959, 

Chap. 4. See also, H. F. Franzen, Second order phase transitions and the irreducible 
representation of space groups, Lect. Notes Chem., Vol. 32, Springer-Verlag, Berlin, 
1982; H. F. Franzen, C. Haas and F. Jellinek, Phys. Rev. B, 10 (1974) 1248. 

5 H. F. Franzen and G. A. Wiegers, J. Solid State Chem., 13 (1975) 114. 
6 H. F. Franzen, D. M. Strachan and R. G. Barnes, J. Solid State Chem., 7 (1973) 374. 
7 W. B. England, S. H. Liu and H. W. Myron, J. Chem. Phys., 60 (1974) 3760. 
8 J. Nakahara, H. Franzen and D. K. Misemer, J Chem. Phys., 76 (1982) 4080. 
9 S. H. Liu, W. B. England and H. W. Myron, Solid State Commun., 14 (1974) 1003. 

10 W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, 
Pergamon Press, New York, 1958. 

11 F. Grr$nvold, H. Haraldsen, B. Pedersen and T. Tufte, Rev. Chim. Miner., 6 (1969) 
215. 

12 A detailed discussion of the crystal structures may be found in A. Kjekhus and W. B. 
Pearson, Prog. Solid State Chem., 1 (1964) 83; F. Hulliger, Struct. Bonding (Berlin) 
4 (1968) 83. 



127 

13 

14 
15 
16 

17 

18 
19 

20 

21 

22 
23 
24 
25 

M. Lax, Symmetry Principles in Solid State and Molecular Physics, Wiley-Interscience, 
New York, 1974. 
H. F. Franzen and G. A. Sawatzky, J. Solid St&e Chem., 15 (1975) 229. 
I. Tsubokawa, J. Phys. Sot. Jpn., 14 (1959) 196. (See also ref. 11.) 
See for example, T. Hughbanks and R. Hoffmann, J. Am. Chem. Sot., 105 (1983) 
3528; M. Kertesz and R. Hoffmann, J. Am. Chem. Sot., 106 (1984) 3453. 
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, 
New York, 1976. 
W. A. Harrison, Solid S tote Theory, Dover, New York, 1980. 
U. Gpik and M. H. L. Pryce, Proc. R. Sot. London, Ser. A, 238 (1957) 425. 
R. F. W. Bader, Can. J. Chem., 40 (1962) 1164. 
For a discussion of the experimental facts see: K. Selte and A. Kjekshus, Actu Chem. 
Stand., 27 (1973) 3195. 
R. E. Peierls, Quantum Theory of Solids, Oxford University Press, London, 1955. 
M.-H. Whangbo, Act. Chem. Res., 16 (1983) 95. 
TiS: H. Hahn and B. Harder, 2. Anorg. Allg. Chem., 288 (1956) 241. 
CrS: T. Kamigaichi, K. Masumoto and T. Hihara, J. Phys. Sot. Jpn., 15 (1960) 1355. 
H. F. Franzen, D. H. Leebrick and F. Laabs, J. Solid State Chem., 13 (1975) 307. 
W. Tremel, R. Hoffmann and J. Silvestre, to be published. 

Appendix A 

The calculations were performed using the extended Hiickel method 
within the tight-binding approximation [Al]. The density of states calcula- 
tions were obtained with the use of 28 k points [A21 for the hexagonal 
phase and a 36 k point set for the orthorhombic geometry. The coordinates 
and other geometrical data were extracted from the literature and references 
given in the main body of the text. 

TABLE Al 

Extended Hiickel parameters [A5, A6] 

Orbital Hii (eV) 5” {Z 

V 3d -8.67 4.75 1.70 
v 4s -7.95 1.25 
V 4P -4.51 1.28 
s 3s -20.0 1.82 
s 30 -13.3 1.82 

%oefficients and exponents in double zeta expansion, 

Cla c2 

0.4755 0.7052 

The diagonal elements Hii are listed in Table Al along with the orbital 
exponents and coefficients. For vanadium, a charge iteration procedure 
[A31 was used to generate the valence state ionization potentials. The Hii 
values were computed with the weighted H, formula [A4]. 
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