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Abstract: Transition metal elements, alloys, and intermetallic compounds often adopt the body centered
cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with
qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures
energetically favorable. To do so, we develop a tight-binding function, ∆Estar, a function that measures the
energetic effects of transferring electrons within wave vector stars. This function allows one to connect
distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure
determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net.
We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using ∆Estar, we rationalize
the differences in energy of these structures. We are able to deduce which orbitals are responsible for
instabilities in seven to nine valence electron per atom (e-/a) bcc systems and five and six e-/a fcc structures.
Finally we demonstrate that these results account for the bcc and fcc type structures found in both the
elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of
a theory of metal structure deformations based on loss of point group operation rather than translational
symmetry is presented.

Introduction

As chemists, compare our understanding of discrete molecules
and alloy structures. In molecular chemistry one has both
quantum mechanical methods which allow the accurate deter-
mination of the electronic energy and simple orbital models
useful in the rationalization of these ab initio results.1-4 Chemists
thus have a varied and vivid picture of why ammonia is
pyramidal, Cr(CO)6 octahedral, and C2B10H12 an icosahedron.
For some extended structures (e.g. covalent solids and Zintl
phases, in which ionic and covalent bonding coexist) our
understanding approaches that we have for molecules.

The situation is quite different for alloys and intermetallics.
Although we have powerful tools such as density functional
theory (DFT)5-8 which permit the routine geometrical optimiza-
tion of many structures, and there is a rich literature of model
concepts for such systems,9-23 the central theoretical framework

of the structure determining factors in alloys and intermetallics
remains elusive to the chemistry community as a whole. For
the practicing solid state chemist, our understanding of even
the simplest of alloy structures, the face centered cubic (fcc),
body centered cubic (bcc), and hexagonal closest packings (hcp),
is not nearly as sharp as the molecular chemist’s understanding
of the quite complex molecules.24
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The goal of this paper is to build toward an understanding of
alloy and intermetallic structure using concepts already familiar
to the chemistry community. Our focus is initially on the bcc
and fcc structures. We begin with DFT calculations (details
provided in the section on calculational methods), not as a tool
to rationalize or predict structures, but essentially as a numerical
laboratory.

Consider a metal, say tungsten, in a body centered tetragonal
or bct cell, a structure in which there are two atoms in the
conventional unit cell, one at the cell corner and the other at
the body center (Figure 1i). On the left side of Figure 2 we
show the DFT energy of this cell as a contour surface.25 As
variables, the obvious unitless parameter,c/a, the axis ratio, is
employed, as well asV/Vmin. The latter parameter is the ratio
of the given unit cell volume to the cell volume of the minimum
energy structure. The energy minima of this surface are atc/a
= 1.0 and 1.7, with a saddlepoint atc/a ) x2 between them.

Contrast this tungsten surface with that of its neighbor in the
periodic table, rhenium (Figure 2, middle left). Re has one more
valence electron per atom (e-/a), and its energy surface is
markedly different from that of W. For example in Re,c/a )
x2 is not a saddlepoint but an energy minimum. This change
is even more pronounced if we keep the number of valence
electrons per atom the same as Re but introduce ionicitysindeed
one of the aims of our work is a theory of the geometric stability
of alloy structures. Consider TaIr, a compound based on the
elements two steps to the left and right of Re in the periodic
table. As Ir is significantly more electronegative than Ta, the
Ta-Ir bond is partially ionic. Here we find the surface shown
at the bottom of Figure 2: thec/a ) 1.0 structure is a
saddlepoint, the global energy minimum is atc/a ) x2, and a
second local minimum is found nearc/a ) 0.85.26

Such multi-valley electronic surfaces are well-known in alloys
and metals.27-31 Many of the transtion metal elements have

energy surfaces with a global minimum for one value ofc/a
and local minima at yet other values. Nor are these local minima
calculational artifacts. Although in certain cases these local
minima are not stable to nontetragonal distortion modes, for
some transition metals it has even proven possible in epitaxially
grown thin films to isolate metastable phases which directly
correspond to the predicted local minima structures.32-37

In both the previously reported electronic surfaces and in the
electronic surfaces shown in Figure 2, bothc/a of 1.0 andx2
are energetically important in this body centered tetragonal (bct)
geometry. The former ratio, of course, corresponds to the bcc
structure. And, as we show in Figure 3, the latter ratio is actually
a face centered cubic net.38 Thus, as might have been anticipated,
both the bcc and the fcc structures are global minimum energy
structures. There is, however, one interesting finding. For one
or another metal structure, bcc and fcc actually correspond to
saddlepoints and not minima. Some thought will show there is
no straightforward symmetry explanation for this latter finding.

In molecular chemistry such high symmetry saddlepoints are
generally associated with the Jahn-Teller effect.39-41 A well-
known example is for Jahn-Teller-unstable octahedral mol-
ecules.42 This is illustrated in Figure 4. Here the octahedron is
unstable both with respect to a deformation (e.g. low spind7,
d8, andd9; the figure showsd7) to a geometry with four short
and two long bonds and to the one with two short and four
long bonds. These are two phases of aneg vibration. As in the
bcc and fcc cases, the high-symmetry geometry belongs to the
Oh point group, the low-symmetry geometry toD4h. This formal
analogy is recapitulated in Figure 1.

A question naturally arises: Are the saddlepoints found in
Figure 2 due to the solid-state equivalent of the Jahn-Teller
effect? This possibility has been mentioned before.43-46 In this
earlier work, particular attention has been paid to how the
number of degenerate highest occupied crystal orbitals is
significantly reduced in going from the high-symmetry to the
low-symmetry structure. Here we are interested instead in
applying many of the well-developed orbital concepts from our
understanding of the molecular Jahn-Teller effect40,42 to the
question of metal and alloy structure. In this regard, it is known
that simple tight-binding or Hu¨ckel theory can be used to
account for Jahn-Teller instabilities, and that indeed such
formalisms often provide the most clear interpretations, captur-
ing the essence of the phenomenon. If this analogy holds, we
might expect that a tight-binding calculation will also have an

(25) Todorov, E.; Evans, M.; Lee, S.; Rousseau, R.Chem.: Eur. J. 2001, 7,
2652.

(26) The true TaIr structure is doubly hexagonal closest packed, dhcp, a structure
intermediate between fcc and hcp. In Figure 2, however, the only accessed
closest packed structure is fcc, a structure whose energy is fairly close to
that of dhcp. Hence in this figure fcc appears to be the global minimum.

(27) Sliwko, V. L.; Mohn, P.; Schwarz, K.; Blaha, P.J. Phys.: Condens. Matter
1996, 8, 799.

(28) Sob, M.; Wang, L.; Vitek, V.Comput. Mater. Sci. 1997, 8, 100.
(29) Watanabe, S.; Komine, T.; Kai, T.; Shiiki, K.J. Magn. Magn. Mater. 2000,

220, 277.

(30) Suzuki, T.; Shimono, M.; Kajiwara, S.Mater. Sci. Eng. 2001, A312, 104.
(31) Friak, M.; Sob, M.; Vitek, V.Phys. ReV. B 2001, 63, 52405.
(32) Kraft, T.; Marcus, P. M.; Methfessel, M.; Scheffler, M.Phys. ReV. B 1993,

48, 5886.
(33) Craievich, P. J.; Weinert, M.; Sanchez, J. M.; Watson, R. E.Phys. ReV.

Lett. 1994, 72, 3076.
(34) Alippi, P.; Marcus, P. M.; Schleffer, M.Phys. ReV. Lett. 1997, 78, 3892.
(35) Tian, Y.; Jona, F.; Marcus, P. M.Phys. ReV. B 1998, 58, 14051.
(36) Qiu, S. L.; Marcus, P. M.; Ma, H.J. Appl. Phys. 2000, 87, 5932.
(37) Jona, F.; Marcus, P. M.Phys. ReV. B 2001, 63, 094113.
(38) This path has a long history in theoretical metallurgy; it goes back to a

paper by Bain (see: Bain, E. C.Trans. AIME 1924, 70, 25).
(39) Jahn, H. A.; Teller, E.Proc. R. Soc. 1937, A161, 220.
(40) Bartell, L. S.J. Chem. Educ. 1968, 45, 754.
(41) Pearson, R. G.Proc. Natl. Acad. Sci. U.S.A.1975, 72, 2104.
(42) Burdett, J. K. Molecular Shapes: Theoretical Models of Inorganic

Stereochemistry; J. Wiley: New York, 1980; pp 170-185.
(43) Ashkenazi, J.; Darcorogna, M.; Peter, M.; Talmor, Y.; Walker, E.;

Steinemann, S.Phys. ReV. B 1978, 18, 4120.
(44) Asano, S.; Ishida, S.J. Phys. Soc. Jpn.1985, 54, 4241.
(45) Fujii, S.; Ishida, S.; Asano, S.J. Phys. Soc. Jpn.1989, 58, 3657.
(46) Sakuma, A.; Yuasa, S.; Miyajima, H.; Otani, Y.J. Phys. Soc. Jpn.1995,

64, 4914.

Figure 1. D4h to Oh to D4h distortion for (i) the body centered tetragonal
(bct) structure and (ii) an octahedron.

A R T I C L E S Lee and Hoffmann

4812 J. AM. CHEM. SOC. 9 VOL. 124, NO. 17, 2002



energy surface similar to the DFT surface. The actual method
we choose to use is theµ2-Hückel method,47-58 a tight-binding

one-electron calculation where a pairwise repulsive energy is
added to the attractive Hu¨ckel energy. In Figure 2b,d we show
the results of aµ2-Hückel tight-binding calculation for W, Re,
and TaIr. It can be seen that the one-electron calculations capture
the essential energetics of the three systems, both in the location
of the energy minima and the energy saddlepoints.59 Encouraged
by these findings, we turn to developing an orbital-based tight-
binding model for the stability of elemental metal and alloy
structures.60
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Figure 2. Contour energy surfaces for W, Re, and TaIr with LDA-DFT and theµ2-Hückel method.25

Figure 3. Equivalence ofc/a ) x2 bct and fcc structure.
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Calculational Methods

Local density approximation (LDA) DFT calculations were carried
out with the Vienna Ab Initio Simulation Package (VASP),61-64 using
the ultrasoft Vanderbilt pseudopotentials65 provided by the package.
Plane wave basis sets were used in the high precision mode. This
corresponds to plane wave energy cutoffs of 218.3, 235.3, and 247.8
eV for respectively Ta, W, and Ir. The Brillouin zone sampling was
done by the Monkhost-Pack66 k points grid (15× 15 × 15 mesh).
Partial occupancies of wave functions were made based on the
tetrahedron method with Blo¨chl correction.67

The µ2-Hückel method23,47-58 is based on a tight-binding ap-
proach,12-15,68-76 where we express the total energy,ET, as

where U(r) is a hard-core interatomic repulsion energy,V(r) is an
attractive bonding energy, andr is a parameter dependent on the size
of the system. The total energyET can be expressed as

where the integrals represent respectively the repulsive and the attractive
energy. HereF(E,r) is the electronic density of states,EF is the Fermi
energy,Eavg is the average energy of the electronic density of states,

andγ is a proportionality constant. The densityF(E,r) is found from
the diagonalization of the Hamilton matrix. Diagonal elements,Hii, are
set equal to prescribed Coulombic integral values, while off-diagonal
elements are based on the Wolfsberg-Helmholz approximation,77 Hij

) 1/2KSij(Hii + Hjj). The parameterK is generally set to 1.75 andSij is
the overlap integral between the atomic orbitalsi andj. Atomic orbitals
are assumed to be single or doubleú expansion Slater-type orbitals.

For the elemental systems the atomic parameters are the same ones
used effectively in previous work on transition metal alloys and main
group systems.78,79 Since the only previous transition metalµ2-Hückel
parameters developed have been for first row elements, we used these
parameters again here:Hii(4s)) -9.10 eV,Hii(4p)) -5.32 eV,Hii(3d)
) -12.60 eV;ú(4s)) ú(4p) ) 1.9,ú1(3d) ) 5.35 (0.5505),ú2(3d) )
2.00 (0.6260). In the case of TaIr it has been determined that the
difference of energy in thed-orbitals is approximately 6 eV,80 and
therefore the Ir Coulombic integrals were placed 6 eV lower than their
Ta counterparts. However, within a single element the difference
between thes, p, andd orbitals was maintained as above. Thus Irs, p,
andd Coulombic integrals were set at-14.45,-10.95,-7.17 eV and
their Ta counterparts were at-8.45,-4.95,-1.17 eV. Slater exponents
were also left unchanged. In the case of GeHii(4p) ) -9.00 eV and
ú(4p) ) 1.85 (the reason for introducing this main group element will
be given below). While our choice of parameters might seem arbitrary,
it meets the criteria of what we wantsa minimally complicated model
that allows for both electron count differences and ionicity.

The parameterγ was determined from the condition that the total
energy,ET, should be a global energy minimum for bcc and fcc cells
with the sizes stipulated below. For calculatingµ2-Hückel energies either
a 900 special point81 rectangular mesh or a 1000 special point
orthorhombic mesh was used. For calculating∆Estar (to be defined
below) we used a 101× 101k-mesh for two-dimensional systems and
a 51× 51× 51 mesh for three-dimensional systems. For Figure 2, we
considered all overlap interactions between atoms less than 10 Å apart.
For all other tight-binding calculations we considered overlaps between
atoms less than 3.1 Å apart. This lower value limits the overlaps to
first nearest neighbors for the square net and fcc and to first or second
nearest neighbors for bcc.

As will be shown in the text,∆Estar is almost nondifferentiable near
the Fermi surface. This is especially true for the perfectly square or
cubic structures. We distorted slightly the high-symmetry cubic cells
to alleviate this problem. For the three systems so studied, square vs
rectangular, bcc vs bct, and fcc vs fct, we shifted the cell axis ratios to
be respectively 1.008, 1.010, and 0.992. For the results of Figures 10,
12, and 16 we made these same shifts in the correspondingµ2-Hückel
calculations. Thus for these figures we used for a square net a 2.39×
2.41 Å cell, for the rectangular net a 2.38× 2.42 Å cell, for bcc a 2.87
× 2.87× 2.90 Å cell, for bct a 2.86× 2.86× 2.92 Å cell, for fcc a
3.59× 3.59× 3.56 Å cell, and for fct a 3.60× 3.60× 3.54 Å cell.
For Figure 11 we use two equivalent density cells witha ) 2.88 Å for
bcc anda ) 3.628 Å for fcc. The band diagrams in Figure 14 are for
an a ) 2.88 Å bcc cell, and a 2.86× 2.86 × 2.934 Å bct cell. In
Figure 18 the fcc cell hasa ) 3.56 Å and the fct cell is 3.60× 3.60
× 3.48 Å. As energies near saddlepoints and minima are dominated
by the quadratic term in their Taylor expansion, we can estimate the
error introduced by these slight misrepresentations of the square, bcc,
and fcc structures. In Figures 10, 12, and 16 the differences in energy
are roughly 25% too small. This in no way affects the qualitative
understanding derived from these calculations.

Discussion

Jahn-Teller Effect for a Solid. Static molecular Jahn-
Teller distortions are caused by strong electronic-vibrational
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analyses.
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Figure 4. Jahn-Teller energetics for an octahedral molecule. Theeg level
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coupling. There are several equivalent ways to describe what
transpires; the one we choose is an orbital-based description.
In this language, the Jahn-Teller phenomenon is characteristic
of a set of partially occupied highest occupied molecular orbitals
(HOMO). In general these energetically degenerate HOMOs
belong to the same irreducible representation of the molecular
symmetry group. The distortion (an excursion along a normal
mode) lifts the degeneracy. Solid-state equivalents of the Jahn-
Teller effect are well-known. The best studied are the Peierls
distortion82 and charge density waves (CDW).83-85 There is,
however, one notable difference between the molecular Jahn-
Teller effect and the Peierls or CDW distortion.In the former
case the lost symmetry element is a point group operation; in
the latter it is a translation. In the bcc, fcc, and bct cells, while
the conventional crystallographic cells have more than one atom,
the primitive cells all have only one atom each. Hence in going
from bcc to bct to fcc, there is no loss of translational symmetry.
To analyze the effect of change of symmetry on these systems
we must turn to the full space group of the crystal and not just
its translational portion.

We recall that a crystal orbital is a Bloch function:ΦkB ) (1/
xN)∑eikB‚rbj φj, wherekB is thek-vector,rbj the atomic positions,
and φj the atomic orbitals. If we now apply a point group
operation of the crystal,R, to this Bloch function, we find:

In the penultimate equality we use the fact that a dot product
is proportional to the angle between two vectors; thus if one
rotates just one of the two vectors in the dot product as inkB‚Rrbj

this is equivalent to rotating the other vector in the dot product
by an equal and opposite rotation as inR-1kB‚rbj.

As the above expressions demonstrate the equality ofRΦkB

andΦR-1kB, the point group operation mapsΦkB onto ΦR-1kB, and
hence these two Bloch functions belong to the same irreducible
representation. Furthermore, by definition,R-1 is also an element
of the same point group. It is conventional to call the set of
vectors{RkB}, whereR is any point group operation component
of a space group element, a star of reciprocal vectors, orkstar.86

A Two-Dimensional Model.We now consider howkstarcan
help in the analysis of a Jahn-Teller distortion in a solid, i.e.
a distortion in which the point group portion of the space group
is changed but where the translational portion remains unaf-
fected. To understand the situation we need to go back to a
simpler model than our three-dimensional lattice, yet one which
captures the physical essence of the phenomenon. In this spirit,
consider a simple square net of germanium atoms that undergoes
a distortion to a simple rectangular net. This distortion is
illustrated in Figure 5. For the sake of simplicity we restrict
the valence orbitals to thep-manifold and assume (in the spirit
of a Hückel model) that there is interaction between nearest
neighbors only. In such a case there is no mixing between the

px, py, andpz sets. The energies of the Bloch crystal orbitals
are illustrated in Figure 6. These energies are simply understood.
For example, forpx the lowest energy orbital is atkB ) (1/2, 0)
and the highest energy orbital is atkB ) (0, 1/2) as these orbitals
are respectively purely bonding (σ andπ) and purely antibond-
ing. Similarly, at these samekB-vectors, thepz orbitals are
nonbonding.

In the undistorted square net a 90° rotation is a symmetry
operation, andkB ) (1/2, 0) andkB ) (0, 1/2) belong to the same
kstar. Thus, thepz based crystal orbitals at these twok-points
belong to the same irreducible representation. But for the
rectangular net a 90° rotation is not a symmetry operation, and
these two orbitals are no longer degenerate. This is shown in
Figure 7a. If we assume a band-filling of three electrons per
atom (e-/a) the px, py, and pz are each filled with a single

(82) Peierls, R. E.Quantum Theory of Solids; Clarendon Press: Oxford, 1955.
(83) Wilson, J. A.; DiSalvo, F. J.; Mahajan, S.AdV. Phys. 1975, 24, 117.
(84) Monceau, P.; Ong, N. P.; Portis, A. M.; Meerschaut, A. M.; Rouxel, J.

Phys. ReV. Lett. 1976, 37, 602.
(85) Canadell, E.; Whangbo, M. H.Chem. ReV. 1991, 91, 965.
(86) Lax, M. Symmetry Principles in Solid State and Molecular Physics; J.

Wiley: New York, 1974.
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Figure 5. Distortion of a square to a rectangular net.

Figure 6. Energy contour map of square netpx, py, andpz orbitals. Energies
are color coded. Red corresponds to bonding, green to nonbonding, and
blue to antibonding.
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electron, all bonding orbitals are filled, and all nonbonding
orbitals are half-filled. For this number of electrons, Figure 7a
begins to resemble a conventional diagram for the molecular
Jahn-Teller effect. Thus at 3.0 e-/a, there may be a Jahn-
Teller effect stabilizing the rectangular geometry.

The picture in Figure 7a is thus reminiscent of the classic
molecular Jahn-Teller system, cyclobutadiene. In cyclobuta-
diene there are fourπ molecular orbitals (Figure 7b) and four
π-electrons. The shape of theseπ-orbitals is completely
determined by symmetry. Were cyclobutadiene to adopt a square
geometry there would be one bonding, one antibonding, and
two nonbondingπ-orbitals. In a square geometry these two
nonbonding orbitals are degenerate and half-filled. Under a
distortion fromD4h to D2h symmetry this pair of orbitals splits
into two: one orbital becomes weakly bonding, the other
antibonding. The classic rationalization for why cyclobutadiene
has aD2h ground-state geometry is that in this latter geometry
all the π-electrons are in bonding orbitals.3

The strong similarity between the square and rectangular net
orbitals shown in Figure 7a and the cyclobutadiene orbitals
shown in the center of Figure 7b suggests a strategy to quantify
potential Jahn-Teller effects in extended solids. It is one which
retains, as much as possible, the feel of molecular Jahn-Teller
theory. In Figure 7, we saw for both molecule and extended
net the driving force for distortion is a pair of orbitals which
are degenerate in the high-symmetry geometry but have different
energies in the low-symmetry structure. In the cases shown in

Figure 7, this distortion is further abetted by electron transfer
between the formerly degenerate orbitals, from the situation
where both orbitals are filled by one electron to the one where
one orbital is empty, the other filled.

In studying extended solids, we therefore focus on orbitals
which by symmetry are degenerate in the high-symmetry
structure but are not degenerate in the low-symmetry structure.
As in Figure 7, we restrict ourselves to electron transfer between
these symmetry related orbitals. In the language of the solid
state, we restrict electron transfer to that between twokB-vectors
belonging to the samekstar (see above). We keep the number of
electrons in eachkstar fixed and calculate for eachkstar the
difference in energy between the undistorted and distorted
geometry. The number of electrons in eachkstar is set equal
to that found in the undistorted structure. We call this energy
∆Estar(kB) or just ∆Estar. The total difference in energy can be
obtained by integrating this function.

In considering this∆Estar function, we make the assumption
that it is the interplay between crystal orbitals which are related
to one another by symmetry that plays a central role in the
Jahn-Teller energetics, rather than crystal orbitals which are
just accidentally degenerate. This is a strong assumption, as in
metals there is in general a two-dimensional surface of states
which are accidently degenerate. Indeed, it is known that such
accidental degeneracies can play a considerable role in metal
and alloy phonon structure.43,87,88

In Figure 8 we show this∆Estar function for two different
bandfillings, 1.2 and 3.0 e-/a (electrons per atom). (We choose
these two band fillings for as we show below, they correspond
to the electron counts where there are cusps in∆Estar.) For both,
the∆Estar is nearly zero, except at several well-definedkstar. As
may be seen in Figure 8, these peaks have the form of ridges.

It is especially instructive to compare these ridges with the
contour maps of thep crystal orbitals, shown previously in
Figure 6. In particular, we need to concentrate on the contour
lines in Figure 6 which correspond to the highest occupied
molecular orbitals, i.e. the orbitals at the Fermi energy. Consider
first 3.0 e-/a, where thepx, py, andpz orbitals are all half-filled.
For this case, the contour lines which correspond to the highest
occupied molecular orbitals are purely nonbonding. They are
the pure green lines of Figure 6 and they are only partially filled
with electrons. For thepz crystal orbitals, these nonbonding
molecular orbitals correspond to the straight contour line that
runs from the upper left of Figure 6c to the lower right.

When one compares the green contour lines of Figure 6 with
the ∆Estar function for 3.0 e-/a, shown in Figure 8, we see
something interesting. The ridges in the∆Estar function are at
exactly the same location as the green contour lines. Why should
such a correspondence exist? Recall that at 3.0 e-/a the green
contour lines indicate those orbitals which are only partially
filled with electrons. Recall also that the∆Estar function groups
together the orbitals which are related to one another by
symmetry. The correspondence of the contour lines and the
ridges of the∆Estar function tell us that both partial orbital
occupation and the grouping together of symmetry equivalent
orbitals are important.

To understand why this is so, consider again cyclobutadiene
(see Figure 7b). In cyclobutadiene’s square geometry there are

(87) Varma, C. M.; Weber, W.Phys. ReV. B 1979, 19, 6142.
(88) Herper, H. C.; Hoffmann, E.; Entel, P.; Weber, W.J. Phys. IV 1995, 5,

C8-293.

Figure 7. Effect of rectangular distortion (a) on thepz kB ) (0, 1/2) andkB
) (1/2, 0) orbitals of a square net for a band filling of 3 electrons per atom
and (b) for theπ-orbitals of cyclobutadiene.
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two partially filled symmetry-relatednonbonding orbitals. Under
the rectangular distortion they split apart in energy: one orbital
becoming slightly bonding and the other slightly antibonding.
Given the initial partial occupation of these two orbitals by just
two electrons, the slightly bonding orbital is filled and the
slightly antibonding orbital is unfilled: the system is stabilized.

For the same phenomenon to occur in the solid state, just as
in cyclobutadiene, one needs again partially filled symmetry-
related orbitals. There must be a set of originally degenerate
orbitals which are energetically split apart by the distortion:
some going down in energy and others going up in energy. This
set of orbitals must be partially filled so that the energy
stabilization found from the set of stabilized orbitals is not
counteracted by occupation of the others. In the case of the
square to rectangle distortion for 3.0 e-/a, the partially filled
orbitals are the orbitals which correspond to the green contour
lines in Figure 6. The symmetry-related degenerate orbitals
correspond to the individualkstar. Hence it is only these green
contour orbitals and theirkstarrelated orbitals that cause the solid-
state Jahn-Teller distortion.

However, Figure 8 also shows that not all Fermi surface states
contribute equally to∆Estar (in a metal the HOMO orbitals are
said to be on the Fermi surface). At 1.2 e-/a, the ridge in the
∆Estar function is highest wherekstar is (1/2, 1/2) while at 3.0
e-/a, the ridge is highest at (1/2, 0). Actually, these band fillings
are not just pedagogical examplesswe have surveyed the full
range of electron populations and these two band-fillings are
those with the largest values of∆Estar. It should be noted though

the square net is alternant (by alternant we mean there are no
odd member rings of bonded atoms).89 At the Hückel level, this
results in a pairing of filled and unfilled levels; thus∆Estar at
4.8 e-/a (1.2 holes per atom) is by symmetry the same as that
at 1.2 e-/a.

The explanation for the relative heights of these ridges may
be found by examining theshapeof the orbitals in thekstar

themselves. We consider first the 1.2 e-/a system. AtkB ) (1/2,
1/2), the two energetically degenerate Fermi surface orbitals are
thepx andpy orbitals. Thepx orbital, shown at the left of Figure
9, is σ-bonding in the horizontal direction, butπ-antibonding
in the vertical direction. The converse is true for thepy orbital.
Under the rectangular distortion, horizontal interactions become
stronger and vertical interactions weaker. As thepx orbital is
bonding in one direction and antibonding in the other, such a
distortion causes a large decrease in crystal orbital energy;
similarly, thepy orbital increases in energy. The result is a large
driving force for the Jahn-Teller effect associated with this
pair of orbitals at this particular electron count.

For 3.0 e-/a the most energetically important orbitals are the
pz orbitals atkB ) (1/2, 0) and (0,1/2). These were shown in
Figure 7a. One member of this pair of orbitals is bonding in
the horizontal direction and antibonding in the vertical direction,
while the opposite is true for its partner orbital. Again, the result
is a large associated Jahn-Teller effect.

(89) Coulson, C. A.; Rushbrooke, G. S.Proc. Cambridge Philos. Soc. 1940,
36, 193.

Figure 8. ∆Estar for a square vs a rectangular net: (a and b) at 1.2 and (c and d) at 3.0 e-/a.
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∆Estaris also useful in analyzing the total difference in energy.
In Figure 10a, we show the results of aµ2-Hückel calculation
for the square and rectangular net. Plotted is the difference in
energy between these two structures,∆Eµ2, as a function of band
filling. The curves are plotted so that a positive value corre-
sponds to the square net being more stable and a negative value
to the rectangular net being more stable. It can be seen that
near 1.2, 3.0, and 4.8 e-/a, the rectangular structure is preferred.

These are exactly the electron counts discussed in the preceding
paragraphs. As Figure 10a shows, the magnitude of this
difference in energy is controlled by the size of the distortion.
As the square net (b/a ) 1.0) is an energetic saddlepoint, we
expect that the quadratic term will dominate a Taylor series
expansion around the saddlepoint geometry. This quadratic
relation roughly holds betweenb/a ) 1.02 and 1.05, but is less
correct at higherb/a values.

In Figure 10b, we compare directly∆Eµ2 with ∆Estar for b/a
) 1.02, where we have integrated the latter function over
k-space.90 It can be seen that the two functions are quite similar.
Both functions have sharp spikes near 1.2, 3.0, and 4.8 e-/a.
The functions differ by an approximately parabolic function that
is greatest at the half-filled band and zero at the band edges.
Such an error is expected, as we have not made an interatomic
repulsion correction in∆Estarbut have in∆Eµ2. Such a correction
is expected to be parabolic.23

Finally, in Figure 10c we compare these difference in energy
curves with the electronic density of states (DOS). It is
conventional to plot the DOS as a function of the Fermi energy.
Here we plot the DOS as a function of band-filling. In this way
we can directly compare parts b and c in Figure 10. We see
that the band fillings with the largest Fermi surface, i.e. the
greatest number of highest occupied molecular orbital states,
are the same band fillings for which the Jahn-Teller distortion
is strongest. The shape of the density of states can be understood
by reexamining Figure 6. It is precisely at these electron
concentrations where the contour lines intersect the corners of
the diagrams. These corners are high symmetry points in
k-space, where bands in the band diagram have zero slope.91

Therefore, it is at these electron counts where not only the Fermi
surface contour lines are longest, but also the Fermi surface
contour slopes are flattest. Consequently it is at thesek-points
where the electronic density of states is highest.

However, our preceding analysis at 1.2 and 3.0 e-/a shows
that this correspondence is somewhat misleading. As we
discussed earlier, it is not the length or width of the ridges in
∆Estar which are important, rather it is the magnitude of the
major peaks in these ridges. A similar phenomenon is found
for molecular Jahn-Teller distortions. For example, in transition
metal octahedral complexes there are threet2g orbitals and only
two eg orbitals, but it is theeg-based Jahn-Teller instabilities
which have the greatest distortions.42 The reason for this is
clearstheeg levels areσ-antibonding, thet2g levelsσ-nonbond-
ing (or π-antibonding if the ligands areπ donors).

If it is a coincidence that the electron fillings with the largest
electronic density of states are also the ones where∆Estar has
its largest values, what is the reason for it? Again we turn to
Figure 6. It is the orbitals at the corners of the diagrams in Figure
6 that are maximally bonding and antibonding. And more to
the point, it is at the corners where orbitals are maximally
bonding along one axis direction and antibonding along the
other.∆Estar is therefore maximized when these corner orbitals
lie on the Fermi surface. Similarly it is the contours which pass
through these same corner states which are both flattest and

(90) We choose such a small distortion as the interest in this paper is the Jahn-
Teller distortion itself and hence the energetic behavior near the high-
symmetry structure.

(91) Ashcroft, N. W.; Mermin, N. D.Solid State Physics; Holt, Rinehart and
Winston: New York, 1976; p 145.

Figure 9. Effect of rectangular distortion of a square net on thepx andpy

kB ) (1/2, 1/2) orbitals for a band filling of 1.2 electrons per atom.

Figure 10. (a) Difference inµ2-Hückel energies between the square net
and a rectangular net. Negative values correspond to the rectangular net
being more stable. (b) Comparison of∆Estar and ∆Eµ2 for the square vs
rectangular (b/a ) 1.02) net. Note the∆E-scale is different from Figure
10a. (c) The square net electronic density of states as a function of band
filling.
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longest; this is where one finds the greatest values of the
electronic density of states.

Thus the corners in Figure 6 determine both the maximum
values of∆Estar and the maxima in the density of states. This
accounts for the agreement between parts b and c in Figure 10.
We note thatkB-vectors such asΓ, (1/2, 0), (0,1/2), and (1/2, 1/2)
are often the places where orbitals are maximally bonding or
antibonding. This is especially true for simple systems. Thus
although it is a coincidence that there is a correlation between
∆Estar and the density of states, it is a coincidence that will
frequently occur.

With the experience gained from this two-dimensional
problem, we are ready to apply the∆Estar analysis to the three-
dimensional problems of central interest to us, the structure of
metals and alloys.

Bcc to Bct Distortion. Group 3 and 4 transition metal
elements adopt the hcp structure, group 5 and 6 elements the
bcc structure, nonmagnetic group 7 and 8 elements the hcp
structure, and nonmagnetic group 9-11 elements the fcc
structure.92 In accounting for these facts it is clear that the
valences-, p-, and d-orbitals can all potentially play a role.
However, it is well established that it is thed-orbitals which
are most important. Thus Pettifor has used a near neighbor
d-orbital model to correctly determine differences in energy
between the bcc, fcc, and hcp systems.93 His results agree with
the above experimental findings with one exception: near the
completely filledd-band, Pettifor’s calculations suggest that bcc
is preferred over fcc.

In Figure 11 we present the results ofµ2-Hückel calculations
comparing the fcc and bcc structures. Two different models are
presented. In the first, a full set ofs-, p-, and d-orbitals is
considered, while in the second onlyd-orbitals are used. To
directly compare these calculations we need to assign the
occupancy of thes- andp-bands in thed-orbital model. We do
so by making the simple assumption that thep-band remains
unfilled and that thes-band occupation is proportional to the
d-band occupation. We therefore multiply thed-band electron
concentration by6/5 to determine the appropriate e-/a level. As
Figure 11 shows, the two models are comparable. However,
near the filleds- andd-band limit, thed-orbital model has bcc
too stable with respect to fcc. This is the same error as found

in the Pettifor results. It suggests that for such late transition
metal elementss- and p-orbital effects must be explicitly
considered.

In the systems shown in Figure 2, the average electron
concentrations are 6 e-/a while for Re and TaIr the concentration
is 7 e-/a. At such lower electron counts, ad-orbital model
captures the principal energetic features. As our goal is to
explain, using the simplest picture possible, the energetics of
these lower electron count systems, we consider here, as had
Pettifor, near neighbord-orbital interactions alone.

We consider first the stability of the bcc net with respect to
a bct distortion (c/a ) 1.02), see Figure 1i. We show the results
of both aµ2-Hückel calculation and an integrated∆Estarfunction
for such a distortion in Figure 12a. As can be seen, the two
functions closely track one another. The bcc undistorted structure
is preferred near 5d-electrons per atom, but from 6 to 9
d-electrons per atom the bct distortion is lower in energy.
Recalling the approximate factor of6/5 necessary to convert these
band-fillings to periodic table group numbers, these results
suggest that group 5 and 6 transtion metal elements in the bcc
structure are not Jahn-Teller unstable, but that group 7 and
above elements are Jahn-Teller unstable. This is borne out
experimentally. All nonmagnetic transition metal elements
belonging to group 7 or higher or group 4 and lower adopt
closest packed structures, while group 5 and 6 elements adopt
the bcc structure. These results cannot be used to distinguish
the fcc from the hcp structures,94 but as fcc and hcp are
structurally similar, the differences in energy between them are
small when compared to their differences in energy with respect
to the bcc structure. We can therefore assume that the hcp vs
bcc energies are fairly similar to the ones shown in Figure 12.
That this is so is verified by Pettifor’s original results on the
fcc, hcp, and bcc structures. In his work, the differences in
energy between fcc and bcc were five times greater than those
between fcc and hcp.

We can compare these energy difference curves to the
electronic density of states plotted as a function of electron

(92) Massalski, T. B.; Okamoto, H.; Subramanian, P. R., Eds.Binary Alloy Phase
Diagrams, 2nd ed.; American Society for Metals: Metal Park, OH, 1990.

(93) Pettifor, D. G.Bonding and Structure of Molecules and Solids; Oxford
Science: Oxford, England, 1995; pp 223-226.

(94) Hcp has two atoms in its primitive cell. Hence any study comparing Jahn-
Teller instabilities of fcc with respect to hcp requires the use of both
rotational and translational symmetry elements, a study outside the compass
of the present work.

Figure 11. Difference inµ2-Hückel energies between bcc and fcc. Negative
values correspond to the fcc being more stable. In thed-only model, the
d-band electron concentration is multiplied by6/5 to simulate partials-band
fillings.

Figure 12. (a) Difference in energies between bcc and bct (c/a ) 1.02)
using ad-orbital only model. Negative values correspond to bct being more
stable. Differences in energy are per atom. (b) Electronic density of states
for bcc given as a function ofd-orbital band-filling.
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concentration. This latter curve is shown in Figure 12b. As in
the case of the square to rectangular distortion discussed
previously, there is a coincidence between the electron counts
which are Jahn-Teller unstable and the electron counts which
have the largest Fermi surface area. The two maxima in the
density of states are found near one and eightd-electrons per
atom. Conversely, the minimum Fermi surface is found near
five d-electrons per atom, the electron concentration where there
is no Jahn-Teller driving force.

These coincidences can again be accounted for by examining
the∆Estar function. We consider here 7.8 e-/a, the band-filling
where the driving force to the distorted bct structure is strongest.
At this electron count,∆Estar has a maximum nearkB ) (0, 1/2,
1/2), a k-point traditionally termedM.86 In Figure 13a, we give
∆Estar for the planekB ) (0, ky, kz). It can be seen that∆Estar is
nearly zero except aroundM. This peak extends quite far in the
kx direction. Even in thekB ) (0.2,ky, kz) plane, see Figure 13b,
it is still quite prominent.

As in the previous two-dimensional example, we can trace
the origin of this peak to the corresponding crystal orbitals. In
Figure 14a we show a portion of the band diagram for a bcc
cell betweenM and R {kB ) (1/2, 1/2, 1/2)}. We choose this
segment ofk-space as it is along this direction that∆Estar is
large. All the bands betweenM andR are doubly degenerate.
Two of these bands track closely to one another, never differing
in energy by more than a few hundreths of an electronvolt. At
M they have an energy of-10.64 eV, the Fermi energy of the
7.8 e-/a system. In Figure 14b we consider this same region of
k-space, but with a bct cell with ac/a axis ratio of 1.026. Under
this bct distortion, the bands remain doubly degenerate, but the
two bands no longer track each other quite as closely. While at

Mz {kB ) (1/2, 1/2, 0)} they are still within 0.06 eV of one another,
at Mx {kB ) (0, 1/2, 1/2)} they are separated by almost 0.3 eV, a
large change considering that the nearest neighbor bond
distances have shifted by only 0.004 Å and second nearest
neighbor bond distances by 0.05 Å.

The origin of this large energy splitting can be understood if
we examine the actual orbitals atMx. These are shown to the
right in Figure 14b. Here we show per band just one of the pair
of degenerate orbitals. The lower energy orbital has nearly
perfectdz2 atomic orbitals at the unit cell corners, and a smaller
dxz atomic orbital at the body center. The higher energy orbital
is related by a 90° rotation to the lower energy orbital.

In a bcc cell, the nearest neighbor interactions are between
the atoms at the cell corner and the atoms at the body center.
Second nearest neighbor interactions are between atoms at
adjacent corners. Consider the first nearest neighbor effects. The
key point here is that while the body centerdxz orbitals are
pointing in aσ fashion to the cell corners, the corner atoms are
of dz2 anddy2 type. These latter orbitals have aσ-nodal cone at
azimuthal angles of 54°. But that is precisely the angle at which
the body center atom sits. Hence in bcc there is noσ-interaction
between first nearest neighbors. If we now considerc/a > 1.0,
the body center atom no longer sits on the nodal cone. The
lower and higher energy crystal orbitals become respectively
σ-bonding and antibonding.

With respect to the second nearest neighbor interactions, the
lower energy orbital is seen as principally antibonding along
the z direction and then weakly bonding in thexy-plane. By
contrast the higher energy crystal orbital is net antibonding in
thexy-plane. The bct distortion being considered is one where
c/a > 1.0. Hence the cell is stretched along thez direction and
contracted in thexy-plane. Therefore, second nearest neighbor
effects also cause a substantial Jahn-Teller splitting. In sum-
mary both first and second nearest neighbor effects conspire to
produce a maximal Jahn-Teller splitting at 7.8 e-/a at the
k-point M.

Fcc to Fct Distortion. The above results give a clear picture
of the Jahn-Teller instabilities of the bcc structure. They suggest
only group 5 and 6 elements should be found in the bcc
structure. This is confirmed experimentally: the only bcc
transition elements are V, Nb, Ta, Cr, Mo, and W. But the above
analysis is not complete. All we have shown so far is that group
7 and higher or group 4 and lower elements are Jahn-Teller
unstable in the bcc structure. It is possible that closest packed
structures are Jahn-Teller unstable as well. We therefore turn
to distortions of a fcc cell. We consider face centered tetragonal
(fct) distortions to this fcc cell. This is illustrated in Figure 15.

In Figure 16a we compare the differences in energy between
an fcc cell and an fct cell (c/a ) 0.98), using both theµ2-Hückel
method and an integrated∆Estar function. As in the previous
cases, the two functions closely track one another. It is also
instructive to compare Figure 16a with Figure 12a. It may be
seen that the two figures are complements of each other. At 4
or 5 d-electrons per atom the fcc structure is unstable with
respect to a flattened tetragonal cell but at the same electron
count bcc is stable. By contrast at 6 to 9d-electrons per atom
bcc is unstable with respect to an elongated tetragonal cell but
fcc is stable. A sufficiently flattened fct cell is bcc, just as a
sufficiently elongated bct cell is fcc. Hence these results are
compatible with 4 or 5d-electron per atom cells flattening until

Figure 13. ∆Estar for 7.8 e-/a for bcc and bct (c/a ) 1.02) using ad-orbital
only model for (a)kB ) (0, ky, kz) and (b)kB ) (0.2, ky, kz).
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they become bcc and 6-9 d-electron per atom bct cells
elongating until they are ideally fcc. Recalling that at the half-
filled band there is approximately one electron in ans-orbital
per atom, these results suggest that at 6 e-/a, bcc should be an
energy minimum structure and fcc a saddlepoint, while at 7
e-/a, the roles of bcc and fcc should be reversed. As W has 6

e-/a and Re and TaIr an average of 7 e-/a, these qualitative
theoretical calculations match precisely the DFT results il-
lustrated in Figure 2.

In Figure 16b we show the electronic density of states as a
function of band filling. In contrast to the preceding cases, we
see there is little agreement between the maxima and minima
of parts a and b of Figure 16. Recalling our analysis of the
source of these coincidences, we therefore anticipate that the
key k-vectors for∆Estar do not lie at the corners ink-space.
That this is so is verified by explicitly calculating∆Estar at 4.2
d-electrons per atom, the electron concentration with the greatest
driving force for the fct distortion.

The principal features in the fcc to fct∆Estar landscape are a
plateau found nearkB ) (1/4, 1/4, 1/4) and a circular ring of states
betweenkB ) (1/4, 1/4, 1/4), (0.37, 0.37, 0.37), and (0.5, 0.3, 0.3).
These are illustrated in Figure 17. We may account for these
features by examining the corresponding crystal orbitals. In
Figure 18a we present a band diagram betweenΓ andR. It can
be seen that along this segment ofk-space there are two sets of
degenerate bands at the Fermi energy of-12.9 eV. There is a
doubly degenerate band nearkB ) (1/4, 1/4, 1/4), and a triply
degenerate band near (0.37, 0.37, 0.37). Under a small fct
distortion toc/a ) 0.97, these bands split by respectively 0.4
and 0.3 eV (see Figure 18b).

Again we turn to the shapes of the crystal orbitals to account
for this splitting. As these orbitals do not lie at special points
in k-space, the corresponding crystal orbitals have complex
coefficients. To give understandable graphical representations,
we substitute the orbitals atR most closely correlated to the
true orbitals at (0.37, 0.37, 0.37). These are shown to the right
of Figure 18b. As may be seen in this figure, the lower energy
orbital isσ-bonding along they + zdirection across theyzface
of the cube,σ-bonding along thex + z direction across thexz
face of the cube, butπ-antibonding along thex - y direction
across thexy face. Similarly, the higher energy orbital is
antibonding along thez direction butσ-bonding along thex +
y direction across thexy face. A flattening of the unit cell splits
these two orbitals apart, the classic Jahn-Teller scenario. A
similar diagram can be made at (0.5, 0.3, 0.3).

The orbitals atkB ) (1/4, 1/4, 1/4) are also complex, but here
atomic coefficients can be made purely real or purely imaginary.
As there is no interaction between a real and an imaginary
orbital, and as in this case the real and imaginary coefficients

Figure 14. Band diagram for thed-orbital only model between M and R,(a) for bcc and (b) for bct (c/a ) 1.026). The Fermi energy of the 7.8 e-/a bcc
system is-10.64 eV. The key orbitals for∆Estar are indicated by arrows. For the sake of clarity body center atomic orbitals have been increased by 20%.

Figure 15. D4h to Oh to D4h distortion for a face centered tetragonal lattice.

Figure 16. (a) Difference in energies between fcc and fct (c/a ) 0.98)
using ad-orbital only model. Negative values correspond to fct being more
stable. (b) Electronic density of states for fcc given as a function ofd-orbital
band-filling.
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on neighboring atoms are similar, to get a sense of its bonding
nature, we can portray just the real portion of the orbital. These
real portions are shown in Figure 19. The lower energy orbital
is π-antibonding in thexyplane butσ-bonding in thezdirection.
Its energy is therefore lowered by the fct distortion. The higher
energy orbital isσ-bonding in they direction butπ-antibonding
in they + z direction. Its energy is raised by the fct distorion,
causing a large Jahn-Teller splitting.

Bcc, Fcc, and Bct Binary Alloys.It is well established that
electron counting rules true for the elements often also apply
to their alloy and intermetallic counterparts.95,96 Here we

consider the relevance of the above theoretical treatment to fully
atomically ordered,97 magnetically unordered,98 low-temperature
stable92 binary transition metal alloys of group 4 through 9
elements. We are interested in atomically ordered phases, as
these are the ones most easily amenable to band structure
calculations. We restrict ourselves to magnetically unordered,
low-temperature stable phases, as we have not considered spin
interactions or entropy effects. Finally we consider only group
4-9 binary alloys, since it is only for transition metals of fairly
similar orbital character that theµ2-Hückel method can be
applied. In Table 1, we list all phases which form in variants of
the bcc, fcc, and bct structures and where the stoichiometries
of the two elements are either 1:1 or 1:3.97,99 The 1:2 ratio
transition metal alloys tend to form in Laves phases and hence
are not often structurally related to bcc, bct, or fcc.

Three main structure types are found. The first is the well-
known CsCl structure, a cubic structure with one atom at the
corner of the unit cell and the other atom type at the body center.
It is an ordered bcc cell. The second is AuCu3, a structure with
an fcc network of atoms, with one atom type on the cubic unit
cell corner and the other on the cell faces. Finally, and most
interestingly, there is the HgMn structure, also called the AuCu
I structure. Unlike the previous two structures, this type is
tetragonal. This is an ordered bct arrangement with one atom
at the cell corner, and the other atom at the body center.

All three structures are therefore ordered variants of bct, see
Figures 1a and 3. In Table 1 we list for each of the compounds

(95) Hume-Rothery, W.; Raynor, G. V.The Structure of Metals and Alloys;
Institute of Metals, London: 1962.

(96) Hume-Rothery, W.Phase Stability in Metals and Alloys; McGraw-Hill,
New York: 1965.

(97) Villars, P.; Calvert, L. D.Pearson’s Handbook of Crystallographic Data
for Intermettallic Phases; ASM International: Materials Park, OH, 1991.

(98) Wijn, H. P. J., Ed.Landoldt-Börnstein New Series: Group 3: Condensed
Matter, Volume 19: Magnetic Properties of Metals, SubVolume a: 3d, 4d,
5d-Elements, Alloys, and Compounds; Springer: Berlin, Germany, 1986.

(99) van Vucht, J. H. N.J. Less Comm. Met. 1966, 11, 308.

Figure 17. ∆Estar for 4.2 e-/a for fcc and fct (c/a ) 0.98) using ad-orbital only model for (a) thekB ) (kx, ky, 0.25) plane and (b) thekB ) (kx, ky, 0.37) plane.

Figure 18. Band diagram for thed-orbital only model betweenΓ and R
(a) for fcc and (b) for fct (c/a ) 0.97). Numbers indicate the band
degeneracies. The Fermi energy of the 4.2 e-/a bcc system is-12.90 eV.
Some of the key orbitals of∆Estar are indicated by arrows.

Figure 19. Real portion of fct (c/a ) 0.97) orbitals atkB ) (1/4, 1/4, 1/4).
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thec/a ratio in terms of this bct cell and the average number of
e-/a. There is a strong correlation between the two. At 5.5 and
6 e-/a, thec/a ratio is invariably 1, at 6.5 e-/a thec/a ratio
rises from 1.00 to 1.18, and finally above 7.25 e-/a,c/a ) x2.
This trend is in agreement with the results of Figure 12a and
16a. As these figures show, at electron concentrations of 5.5
d-electrons per atom (or equivalently 6.5 valence electrons per
atom), both the fcc vs fct integrated∆Estar function and the bcc
vs bct integrated∆Estar function go through a node. Hence bcc,
fcc, and bct structures with 1.0< c/a < x2 are all comparable
in energy. It is exactly here that we find the tetragonal HgMn
structures. The one HgMn structure that does not obey this
electron count rule is MnIr, a phase whose magnetic structure
has not been studied.98

These results also suggest why the tetragonal structures are
so much rarer than the cubic ones. For such tetragonal structures
to occur one needs electron counts where both bcc and fcc are
Jahn-Teller unstable. Instead, as Figures 12a and 16a demon-

strate, these curves are complements of each other. Only near
the nodes of the curves in these figures are distorted bct or fct
cells a reasonable energetic alternative.

Conclusion

In studying the interplay of symmetry and crystal energies,
solid state chemists and physicists have traditionally focused
on translational symmetry elements. In retrospect it is clear why.
The preeminent example of a Jahn-Teller distortion in a crystal
is the Peierls distortion,82 a distortion for one-dimensional
systems. In one dimension the only point group operation is
the inversion center, a symmetry element that due to Friedel’s
law100 cannot play a strong energetic role in∆Estar.

In higher dimensional crystal distortions, there is generally
loss of both translational and rotational symmetry elements.
Given the importance of the Peierls distortion, it is natural that
we should focus on the former and not the latter group elements.
It is nonetheless plausible that by concentrating solely on the
translational elements, vital factors governing structural distor-
tions have been ignored.

Studies involving loss of translational symmetry have demon-
strated the power of maximal Fermi surface nesting, i.e., of
k-vectors which maximally couple Fermi surface states.85 This
can be directly contrasted to the analysis in the current work.
We have found that distortion is not just driven by the number
of Fermi surface states, but also by the propensity of these states
and their corresponding orbitals for distortion. Indeed others
have found smilar effects, for example, when studying electron-
phonon coupling.87 In one system we studied, fcc vs fct, these
latter propensities were a more important factor than the area
of Fermi states. It would be interesting to determine if there
are other systems where both translational and rotational
symmetry elements play a role and where similar orbital
propensities dominate. In such phases the maximal nesting
vector might not be observed, instead a seemingly lesser nesting
vector could be adopted due to its superior orbital interactions.
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Table 1. Atomically Ordered, Magnetically Unordered, Low
Temperature Binary Bcc, Bct and Fcc Compounds

compd structure type e-/a c/a

TiTc CsCl 5.50 1.00
HfTc CsCl 5.50 1.00
VMn CsCl 6.00 1.00
VTc CsCl 6.00 1.00
HfRu CsCl 6.00 1.00
TiOs CsCl 6.00 1.00
ZrOs CsCl 6.00 1.00
HfOs CsCl 6.00 1.00
ZrCo CsCl 6.50 1.00
HfRh CsCl 6.50 1.00
TaRu HgMn 6.50 1.02
NbRu HgMn 6.50 1.12
TiRh HgMn 6.50 1.14
TiIr HgMn 6.50 1.18
MnIr HgMn 8.00 1.34
NbRu3 AuCu3 7.25 1.41
TiRh3 AuCu3 7.75 1.41
ZrRh3 AuCu3 7.75 1.41
HfRh3 AuCu3 7.75 1.41
TiIr 3 AuCu3 7.75 1.41
ZrIr3 AuCu3 7.75 1.41
HfIr3 AuCu3 7.75 1.41
VRh3 AuCu3 8.00 1.41
TaRh3 AuCu3 8.00 1.41
VIr3 AuCu3 8.00 1.41
NbIr3 AuCu3 8.00 1.41
TaIr3 AuCu3 8.00 1.41
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