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Moments of acyclic carbon chains are treated in a systematic way. Explicit 
formulas in terms of connectivities are tabulated up to /~14. This facilitates 
the evaluation of  moments by simply counting the numbers of various frag- 
ments involved. The total ~- electron energy is analyzed by means of  moments 
and the meaning of additivity is interpreted. An approximate formula for E~ 
is parametrized by truncation, preserving only five bond parameters. Based 
on these, we attempt to better rationalize and reformulte the concept of 
aromaticity. 
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I. Introduction 

The traditional way for dealing with MO (abbreviation of "molecular orbital") 
calculations is to solve a secular equation El] 

] E S - H I = O .  (1) 

This equation depends on the basis set {r selected, because the overlap and 
Hamiltonian matrices S and H are defined in terms of {r 

S = (S,;) S0 = (r162 (2) 

H=(H,j) Hq=(r 

* Formerly used names: Kiang, Yuan-sun; Tang, Au-chin 
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Usually, energy levels are obtained first, and wave functions and other observable 
calculations follow. If  S is approximated by the unit matrix 

S = I, S o = 8 0 (3) 

then Eq. (1) is easily expanded into a polynomial characterized by powers of E 
[2-4] 

EN +alEN-I+a2EN-2+ "'" +aN=O. (4) 

The coefficients al, a 2 , . . . ,  aN are related to the energy eigenvalues E~, 
E 2 , . . . ,  EN, thus they can be equally well utilized for handling MO problems. 
Still other possibilities exist. Among them, moments are a useful analytical tool. 
They are defined as 

t x , = - E ; 1 + E ~ + . . .  + E ~  ( I=0 ,  1 , 2 , . . . )  (5) 

and are equal to the trace o f / - t h  power of the matrix H 

/zt = trace H;  (6) 

Obviously, only the lower N members constitute an independent set, since all 
of  the higher moments with 1 -> N are equal to a linear combination of preceding 
N members, according to Eq. (4). Namely 

tZN+m = a l i Z N + m - i  Jr a2beN+m-2+ �9 �9 �9 + aNIXm (m = 0, 1, 2 , . . . ) .  (7) 

The importance and advantage of utilizing moments rests upon their topological 
meaning in relationship to the connectivity of  a molecule. The situation is 
particularly simple and elegant for the Hiickel theory. After putting 

a = 0, /3 = 1. (8) 

H becomes an adjacency matrix A, with its entries satisfying 

A 0 = 1 when i , j  connected 
= 0 otherwise. 

In this case, each non-zero term in/~z is exactly equal to unity 

N N N 

/x,= Y, (A') , ,= E E Ai,~A~t3"'" A~i= E E (1) (10) 
i=1  i = l  o~,~,...,8 i=1  ~,fl,...,8 

representing a cyclic walk of length 1 starting from vertex i and passing through 
vertices a, fl, . . . . ,  t} irrespective of the repeated appearance of some vertices. 
The sum of such walks with respect to each vertex is the value of  tzt, namely the 
number of random closed walks of length I. 

Directly enumerating moments is feasible for small molecules but becomes tedious 
when the molecule is large. In this paper, we present a procedure for evaluating 
moments and list formulas for the convenience of enumerating the moments of 
acyclic chains. It is proposed that the total ~r electron energy be expanded in 
terms of moments. A better interpretation of additivity may thus be achieved. 
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We reformulate a previous theory of aromaticity by parametrization of the total 
energy in terms of five branching types of  bonds. 

2. Moments of acyclic systems 

We limit our attention to acyclic conjugated skeletons with a maximum atom 
valency of three. Nevertheless, the method proposed is general. First of all, it 
seems worthwhile to discuss how to characterize these skeletons or fragments. 
Let us present the smaller members up to N = 8 by diagrams and symbols 

o o--<) o-o-o o-<>-<>-o ~ t>.<)..o-o--o 

[~] [z] [~] [4] [3r] [5] 

oc o o- 

[41] [6] [51] [5oM] [4it] 

[7] [60 [601] [~il] 

[SlOI] [8] [~f] 
[5O2] 

[zo i] [Too I] [611] [6 IOI] 

[6tooO [6oN] [~12] [5111] 

[6oz] 

The symbol I N -  n ; a, b, c , . . . ,  n - a - b - c . . . .  ] temporarily used here signifies 
the topology of  the fragment, N - n  representing the length of  the main chain 
and a, b, c , . . .  signifying lengths of  the first, s econd , . . ,  straight side chains 
respectively. For higher members, where branching side chains exist, this symbol 
should be modified, but we omit doing that for simplicity. These diagrams can 
represent real molecules as their carbon skeletons or they can represent fragments 
that a real molecule includes. 

Because an acyclic chain is alternant, with vanishing odd moments,  we concentrate 
on even moments only. Obviously for any molecule G we have its moments  
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satisfying 

i ~ , =  E C2~s (11) 
G' 

where G' represents a fragment of G involving bonds equal to or less than n, 
N~, signifies the appearances of G' and C2~. ' counts the random closed walks of 
length 2n spanned by G'. All of these are well illustrated by a simple example 
shown below. 

G = butadiene 

n = 3 possible G' [4] [3] [2] 

N~, 1 2 3 

n = 2 G' [3] [2] 

No, 2 3 

An expression for the coefficient C~n in terms o f / z ~  can be derived from Eq. 
(10) by induction. It takes the following form 

G x r  G - t . . ~  ~,r G - - t - - t '  x r  G-- t - - t ' - - t" .q_ �9 
C 2 . = ~ . - E  1 ~ _ , ~ .  E "" l ~ ! G - - t - t ' J ' s  - -  ~ 2 ~ 1 G - - t - - t ' - - t " ~ 2 n  

t t,t' t,t',t" 

(12) 

where t, t', t " , . . ,  represent terminal atoms in molecule G; G -  t, G -  t -  t ' , . . .  
mean fragments generated by deleting one, two , . . ,  or more terminals from G 
respectively. If we still take butadiene as an example, Eq. (12) is reduced to 

C[24n]_.~., [4]__, .) , [3]_1_ , [2] (13) ~ 2 n  -~/-~ 2n ~ kk2n �9 

3. Analytical C~.'s 
Generally speaking, coefficients C~, are too complicated to be given analytically 
except for some special G or special n. If  no more than three terms are involved 
in the characteristic polynomial of G, namely 

Pc = X m ( X  4 -  a lX  2 + a2) (14) 

then by utilizing Eq. (7) recursively, an analytical form for/x~, will be obtained: 

~Gn = gn- l ( al, a2) tx ~ -- g , -  2( al, a2)a2/~o G (15) 

where 

v ( n - r ~ ( _ .  . . . .  2r r 
gn-l( al, a2) = l) al a2. (16) 

zTr \ ] r 

The symbol (n  ; r) means the binomial coefficient and gn(al, a2), a polynomial 

of a~ and a2, is further reduced to a Tchebiecheff polynomial when a2 equals 
unity. In Eq. (15), tz~ and/Zo ~ are simply analytical (see Eq. (19)). As a corollary, 
analytical C~, are also deduced from Eq. (12). Some of them are listed below 
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c[O] 1 
2 n  ~ 

c 22= 2 
C[3] 2n+l 2 2 

2 n  ~ 

C~42 = 6g.-1(3, 1)-4g._2(3, 1 ) - 2 ( 2 " - 1 )  (17) 

C~32 ] = 6(3 " -1 -2"  + 1) 

. . , 

If the fragment G has its number of bonds equal to n, the coefficient C~, is also 
given analytically, namely 

Cz~ = (2n)2 N3 (18) 

where N3 is the number of trivalent atoms. Eq. (18) originates from the fact that 
the fragment G is exactly spanned by random closed walks of length 2n. 

4. Formulas for computing moments 

Based on results given above, moments of acyclic chains can be derived one by 
one by proceeding from the lowest member to higher ones. We list formulas with 
n up to 7 below 

~g---- NIl] 

2Nc 1 

/z6 ~ = 2N[2] + 12N[3] + 6N[41 + 12N[31] (19) 

/x8 ~ = 2N[2] + 28N[3]+32N[a]+72N[31]+ 8NEs] + 16N[,1] 

/z ~ = 2 N[2] + 60 N[3 ] § 120N[4 ] § 300 N[31] § 60NE5] + 140N[41] 

+ 10N[6] + 20N[51] + 20 Ntsot] + 40 N[41 l] 

Iz~ = 2N[2] + 124N[3]§ 390N[41+ I080Ntala+300Ntsa§ a 

+ 96 N[6] + 216 N[sl] + 228 N[sol] + 504N[411] 

1. 12N[7] .1. 24 N[6 H + 24N[6o l] ,1, 48N[51 l] .1. 48 N[slm] ,1, 24N[so2] 

/~ o = 2N[21 + 252 Nt3j + 1176 N[4] ,1, 3612N[31] ,1, 1260N[s] + 3836N[4t] 

+ 588 N[6] + 1484N[51] + 1652N[5ol] + 3976N[411] 

+ 140 N[7] .1. 308 N[61j "1" 322 N[6o q + 728 Nts 11] + 672 Nt51ol] 

+ 366N[5o21 

+ 14N[8] + 28 N[71] ,1, 28 N[7ou .1. 28 N[7ool] + 28 N[6o2] 

1. 56 N[61 l] ,1, 56N[61ou .1. 56 N[6 lOOl] .1. 56 N[6ol 1] -t- 56N[512] 

+ 112N[slll]. 
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The first two equalities are obvious, following the definitions of zero- and 
second-moments. The derivation of other members is also straightforward. We 
illustrate/z4 ~ and/z6 ~ for instance, for which coefficients in Eq. (1 1) are readily 
obtained from Eqs. (17) and (18). Eq. (17) gives 

CE4 z3= 2, Ct621= 2, C~631= 12 

and Eq. (18) gives 

= /,-1131] , '1. '~ CE43]=2• C(64]=2x3 6, ~'J6 = ~ 7 , a •  

Eq. (19) shows how moments are dependent on connectivities in detail, where 
not only bonds but also multi-atom fragments play roles. Notice also that smaller 
fragments appear more frequently than larger ones, which seems to imply the 
nearer neighbor interactions are more important. 

5. Alternative description 

The fragment set used to characterize connectivity is not unique. Various choices 
are possible. An alternative scheme [15] which is useful in practice is based on 
the characterization of each atom by its valency (or degree) in detail. Thus, there 
are four species of atoms, specified by zero-, mono-, bi- and tri-valencies shown 
diagrammatically below 

o o -  - o -  i x .  

0 I 2 3 

Similarly, we have six types of bonds characterized by a pair of atomic valencies 

o-o o-o- o-< -o-o- -o-< ) ~ (  
,, ,2 ~3 22 23 ~3  

and twelve tri-atomic fragments with a set of triple atomic valencies 

o-o-o o-o-o- o-o-< o - ~  o - ~ -  o - ~ (  

121 122 123 131 132 133 

222 223 232 233 325 333 

and so on. 

If  we deal with one component systems other than free atoms and ethylene, we 
are able to ignore the trivial fragments 0 and 1 1, and write down the relations 
holding for numbers of various fragments in the same set as well as between 
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different sets. These include 

NI + N2 + N3 = Nil] 

N, + 2N2+ 3N3 = 2[N12 + N13+ N22 + N23+ N33] = 2N[e] 

2N2 + 6N3 = N12 + 2N13 + 2N22 + 3N23 + 4N33 (20) 

= 2{N12~ + N123 + N131 + N132 + N133 

-Jr- N222 -I- N223 --l-- N232 -~- N233 -I- N323 --I- N333} = 2N[3] 

and others which we omit for simplicity. By means of Eq. (20) moments in Eq. 
(19) can be transformed in terms of the new set as follows 

/Xo a = 1{9 Nl2 + 8N13 + 6Nz2 + 5N23 + 4N33} 

/x~ = 2N12 + 2N13 + 2N22 + 2N23 + 2N33 

/x4 ~ = 4N,2 + 6N13 + 6N22 + 8N23 + 10N33 

bt6 G = 8N~2+ 18NI3+20N22+36N23+ 58N33 (21) 

/z8 G = 16N~2 + 54Nt3 + 62N22 + 148 N23 + 298N33 

+ 8 Ne22 + 16 N223 + 3 2 N323 + 8 N232 + 16 N233 + 3 2 N333 

�9 . . 

where we omit moments higher than tz~. 

These formulas emphasize the role of atomic valency characteristic of each 
fragment, in addition to that of fragment length. This is well known as the 
branching effect by chemists. Eq. (21) emphasizes again the dominant role of 
bonds. They appear uniquely before/z6 c and play a major role in the subsequent 
moments. 

6. Total ~ electron energy 

Because the pairing theorem holds for alterna0ts , the total ~- electron energy of 
the ground state of acyclic systems may be written as 

N 
E ~ = 2  ~ E i=  Y~ ]Ei] (22) 

i = occ i = I 

where the latter summation runs through the entire orbital set. The quantity IE] 
means the absolute value of E, which is an even behaved function of  E and can 
be expanded in terms of  even powers of  E [6] 

]U] = a o +  a 2 E 2 +  a 4 E 4 +  . . .  (23) 

provided the point E = 0  is excluded (which actually has no effect on the 
evaluation of  E,~), or empirically approximated by a polynomial of  E 2 [7]�9 
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On substituting Eq. (23) into Eq. (22) and utilizing the expression for moments, 
we have 

E~ = ao/zo + a21/,2 + a4/d,4 + �9 �9 �9 . (24) 

On further substituting either Eq. (19) or (21) into Eq. (24), E~, is transformed to 

E= = ~. aEr.]NtK ] (25) 
K 

E~ = 2 E i j k ' ' '  N[ijk...] (26) 
i,j,k... 

where the numbers of various fragments are used as variables. Thus the coefficient 
air] or Eok... means the energy component contributed by fragment [K] or Ok" �9 �9 �9 
These formulas display the desired feature of additivity of the total energy in 
terms of the constituents of a molecule. 

One should be able, in principle, to determine a coefficient set {aEr]} or {Eok" �9 "}. 
A set of known values of E~ can be used for fitting Eq. (25) or (26) if they are 
truncated. For example, the following approximate formula comes from Eq. (26) 

E~. = E12N12 -t- E I3NI3  -I- E22N22 + E23 N23 -t- E33 N33 (27) 

by eliminating higher terms than numbers of bonds. Known E~ values of 42 
acyclic conjugated molecules have been used for fitting Eq. (27) by a least squares 
procedure. In this way, the coefficients Eij are determined, as tabulated in the 
following table. 

Table 1. Five Eij determined by least square procedure 

Ex2 E13 E22 E23 E33 

1.5898 1.4145 1.2691 1.1328 1.0221 

A significant trend is shown by this Table in that the bond energy decreases with 
branching. 

7. Aromaticity analysis 

Based on Eq. (27) and Table 1, a similar analysis of aromaticity of cyclic 
conjugated systems can be carried out by utilizing the criterion proposed by 
Dewar [8, 9] as well as by Hess and Schaad [10]. Values of E~ of real systems 
are available from Tables [11] and E~ of their corresponding references are 
calculated from Eq. (27) by enumerating the numbers of the five types of bonds. 
Then the resonance energy per electron (REPE) is calculated according to 

1 E REPE = ~ [  ~ - E~ (ref.)]. (27) 
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Table 2. REPE of some conjugated molecules 

191 

Molecule E~ E~ (Ref.) REPE REPE ( H -  S) 

I 4.000 5.0764 -0 .269 -0.268 
II 8.000 7.6146 0.064 0.065 
III 9.6569 10.1528 -0.062 
IV 13.6832 13.1679 0.052 0.055 
V 19.3137 18.7212 0.042 0.047 
VI 19.4531 18.7468 0.050 0.055 
VII 7.2077 7.3858 -0.030 -0.028 
VIII 9.6568 9.7464 -0.011 -0 .010 
IX 10.3812 10.6297 -0.031 -0.027 
X 16.5055 16.2342 0.023 0.027 
XI 15.9962 16.2086 -0.018 -0.012 
XII 16.2010 16.1830 0.002 0.007 
XIII 7.4659 7.4874 -0 .004 -0.002 
XIV 9.9943 10.0256 -0 .004 -0.002 
XV 10.4556 10.6297 -0.022 -0.018 
XVI 13.3635 13.1679 0.020 0.023 
XVIII 12.7992 13.1679 -0.037 -0.033 
XIX 15.9306 15.7061 0.019 0.022 
XX 18.0048 18.2443 -0.017 -0.014 

REPE's of acyclic systems calculated in this way vary from -0.005 to 0.005 (/3), 
which gives the range of non-aromaticity. Compounds with their REPE outside 
this range should be aromatic (+) or antiaromatic ( - ) .  

Dozens.of compounds have been calculated, and the result seems parallel to that 
of Hess and Schaad [10]. Only part of our results is listed in Table 2, which 
includes the following compounds 

[] 0 0 CO C:CS 
I H IK I~ 

0:3 o 0 co 

C o C O  v-o  0OO 
x v u  x v m  : E E  ~ E  

A few points seem worthwhile emphasizing: (1) The number of parameters used 
here is limited to five possible bonds. They are uniquely determined, without 
arbitrariness, and the result (including a large number of compounds) may be 
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r e f ined  u p o n  i n c l u d i n g  m o r e  p a r ame t e r s .  (2) The  n u m b e r s  o f  va r i ous  types  o f  
b o n d s  are  a lso u n i q u e l y  e n u m e r a b l e ,  w i t h o u t  ave rag ing  in  t e rms  o f  K e k u l e  
s t ruc tures .  So, it  seems  ava i l ab le  for  n o n - c l a s s i c a l  sys tems,  too.  W e  feel the  
m o m e n t  ana lys i s  gives a s o u n d  bas is  for  u n d e r s t a n d i n g  add i t iv i ty  a n d  a romat i c i ty .  

I t  s h o u l d  be  e x t e n d a b l e  to o the r  c h e m i c a l  p r o b l e m s  [12]. 
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