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An orbital model for a solid state transformation, the graphite-to-diamond high-pressure reaction, is 
presented. Using solid state Walsh diagrams we relate this transformation to chemical reactions having 
orbital symmetry constraints. During the transformation the n--deiocalization in the graphite planes is 
gradually lost, leading to buckling and in-plane bond length elongation as inter-plane bonds form. The 
pacing of the different components of the reaction coordinate is important. We show that the transfor- 
mation passes through way points of metallic band structure, which may be related to symmetry 
dictated level crossings in the WaLsh diagrams. o 1984 Academic PESS, IIK. 

In what follows we shall describe an or- 
bital model for a solid state transformation, 
in particular the reaction starting from 
graphite and leading to diamond. Aside 
from its intrinsic interest, it will turn out 
that this transformation bears resemblance 
to certain possibly concerted chemical re- 
actions which have symmetry-related con- 
straints (1). Burdett and Price (2) have 
elegantly applied the ideas of orbital 
correlation diagrams to solid state polymor- 
phic transformations, and our analysis ex- 
tends their work. 

The basic geometries of the two allo- 
tropes related in this work, rhombohedral 
graphite and diamond, are shown in 
Schemes 1 and 2. Three coordinates define 
the structures and the reaction coordinate, 
the CC distance in the layer (ro = 1.40, rD = 
1.54 A), the CC distance between layers 
(RG = 3.35, RD = 1.54 A), the angle 0 be- 

* This paper is dedicated to our friend and col- 
league, Mike Sienko. 

tween the perpendicular to the layers and a 
CC bond within a layer (6~ = 90”, or, = 
109.47”). 

All three coordinates change continu- 
ously during a hypothetical concerted 
transformation, but it is R which is most 
changed, and causes the large reduction in 
volume. Choosing then R as an indepen- 
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FIG. 1. Total energy per 2C units during the graphite 
to diamond transformation. -, Fully optimized; ---, 
rigid approach of graphite layers with fixed in-plane 
bond distances, -.-., energy curve of diamond, as func- 
tion of the C-C distance. TS indicates the position of 
the transition state. 

dent variable, we have optimized the other 
two parameters, r and 8, along the reaction 
path, using extended Hiickel band calcula- 
tions (3). Rhombohedral symmetry was 
maintained along the reaction path. 

The computed energy profile is indicated 
in Fig. 1, and the evolution of the depen- 
dent geometrical parameters r and 8 with R 
in Fig. 2. The extended Hiickel method is 
not reliable for absolute energies, especially 
when bond distance changes are involved. 
In the case at hand the instability of dia- 
mond relative to graphite is much exagger- 
ated. Nevertheless we have substantial ex- 
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FIG. 2. Dependence of the shorter C-C distance (r) 
and the angle 0 on the interplane distance, R, during 
the graphite-to-diamond transformation. 

SCHEME 3 

perience with extracting reliable orbital and 
symmetry arguments from the method, and 
it is in this sense that we will eventually use 
the computations. 

Let us examine some features of the 
computed reaction path. The dashed line in 
Fig. 1 corresponds to the total energy 
within the graphite structure with 8 = 90” 
and r = rg fixed. For R close to RG the two 
curves run close, thus the energy gain due 
to the relaxation of 8 and r is not significant. 
This is in accordance with the small slope 
of both r(R) and 8(R) curves in Fig. 2. An 
analysis of the experimental compressibil- 
ity data of graphite and diamond indeed led 
to the conclusion that for low pressures the 
graphite planes do not buckle (4). 

Nearing the transition state (TS), the 
other two coordinates become very much 
involved. The calculations give a transition 
state for this reaction in which the pyrami- 
dalization is almost complete, the in-plane 
bonds have almost reached their diamond 
values, only the interplane bonds are very 
long and different from those in diamond. 
The graphite r-delocalization is completely 
lost. 

The total energy is an average over the 
symmetric unit cell of the reciprocal space, 
the Brillouin zone, BZ (Scheme 3) just as 
the total energy in a molecule is a sum of 
the one-electron orbital energies.’ The sym- 
metry of orbitals in solids is tied to their k- 
vectors, and even in highly symmetrical 

1 For the Brillouin zone of diamond (fee) the rectan- 
gles become squares, all the hexagons become regular 
and identical, see Ref. (5). 
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solids only a few points, lines or planes 
carry exact symmetries. However, as in the 
case of molecules, the nodal structure of 
the wave function is preserved to a great 
extent, even in quasisymmetrical cases. 
Thus, even off the high symmetry points or 
lines and planes of the BZ, but in their vi- 
cinity, the consequences of the symmetry 
are felt strongly. Therefore, these high 
symmetry points carry measurable weights 
in the averages over the BZ. 

For the P point of diamond there is full s- 
p separation, (5) due to the tetragonal sym- 
metry. One of the triply degenerate sets 
(2~~) has the orbital diagram depicted in 
Scheme 4, together with the 7~ and 7r* orbit- 
als in graphite.2 Also included are the re- 
lated orbitals at T. 

A referee has made the following useful 
comment concerning this transformation: 
“Since the bonding pz orbital in rhombohe- 
dral graphite plane involves an antibonding 

2 Since the interlayer interaction in graphite is small, 
the s-p mixing is negligible. 

interaction between the sheets in the z di- 
rection at P, moving the atoms together in 
the transformation involves a level crossing 
at P, but not at T (O,O,# where there is a 
phase change along z. The crossing at P, 
but not at T, is symmetry-imposed, (cf. the 
linear chain example of Burdett and Price 
(2)), and so this illustrates and broadens 
their suggestions as to situations where one 
could expect bond breaking and remaking 
transformations to result in level crossings 
at certain high symmetry k.” 

The symmetry correlation in Scheme 4 is 
such that along the reaction coordinate the 
levels cross somewhere. A series of actual 
calculations for intermediate geometries 
leads to the two curves shown in Fig. 3, 
which could be considered as the Walsh di- 
agram at the r point of the BZ. 

(eV) 
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FIG. 3. Walsh diagram in the r point for the two 
frontier orbitals shown in Scheme 4 in text. ((0) refers 
to the fully optimized structures, (e) to a rigid interme- 
diate approach at which 0 = 75” and r = 1.5 A, only R 
is varied.) 
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While there are many similarities be- 
tween level correlations and curve cross- 
ings in discrete molecules and similar phe- 
nomena in extended structures, there are 
important differences to note. First of all, 
the two curves on Fig. 3 does not cor- 
respond to the highest occupied (HO), or 
lowest unoccupied (LU) levels. Those HO 
or LU levels are dependent on the band 
structure as a whole, and they are even not 
necessarily at the zone edges or high sym- 
metry points. This leads to the second im- 
portant difference: the transition state, as 
well as a range of states on either side of TS 
corresponds to partly filled, thus metallic 
band structures. This is illustrated in Fig. 4 
through the changes of the densities of 
states as the reaction proceeds. If we were 
to draw Walsh-type diagrams for many k 
points in the BZ, we could see how the 
changes of the densities of states come 
about. But we do not think this is necessary 
here. Due to the very strong perturbations 
of the p states in Scheme 4 the I point of 
the band structure is moved so strongly3 
that the filling has to become partial, lead- 
ing necessarily to a metallic band structure. 

The present work accounts for the re- 
versible decrease of resistivity, followed by 
an irreversible increase in the same observ- 
able as the pressure is raised in graphite (7). 

We have mentioned above the important 
work of Burdett and Price (2) on orbital 
theories of solid state transformations. Our 
analysis extends this by (a) making predic- 
tions about the metallic nature of the inter- 
mediate states; (b) analyzing the coupling 
of the different geometrical parameters dur- 
ing the transformation; (c) explaining the 
high stability of the metastable diamond 
phase. 

The last point is quite general: after high 
pressure has put a system over the (symme- 
try related) barrier, it would require nega- 

3 Large changes of energy band structures upon high 
pressure are well-known experimentally, see, e.g., 
Ref. (6). 

tive stress in the z direction to reverse the 
transition. This follows from the general 
shape of the energy curve, as illustrated 
schematically in Scheme 5. Reaching criti- 
cal pressure, PO, starting from structure A, 
the system collapses into structure B. The 
lower curve is only schematic, as the reac- 
tion coordinate R is not precisely propor- 
tional to the volume. 

It is customary to relate different solid 
state structures by studies of hypothetical, 
sometimes unstable structural models. A 
well-known example of this kind is the ra- 
tionalization of bond length alternation in 
polyacetylene (Scheme 6), which is be- 
lieved to have an alternating structure 
(Scheme 6), because the most symmetrical 
(metallic) one (Scheme 7) is unstable elec- 
tronically.4 This instability is an application 
of Peierls’ theorem on the nonexistence of 
one-dimensional metals (9). 

Other examples for unstable hypothetical 
structures relating solids to each other may 
be found, for instance, in Burdett’s paper 
(10) on the AB solids, which he derives as 
Peierls’ distorted structures starting from a 
simple cubic arrangement. 

The fact that the TS structure is unstable, 

4 Notable examples include the distortion of quasi- 
one-dimensional systems as polyacetylene and transi- 
tion metal layer compound, see, e.g., Ref. (8). 

H H H H Ii Ii 

SCHEMES SCHEMEI 



(eV) 

-25 

-3c 

-3: 

I- 

t 

i - 

DOS 

-15 

(eV) 

-20 

DOS 

d 

-3s - 

DOS 

FIG. 4. Valence electron densities of states (DOS) along the graphite-to-diamond transformation: (a) 
graphite; (b) graphite, compressed, R = 2.67 A; (c) at the computed transition state, TS; (d) diamond. 
The dashed projections are for 2p, orbitals. Note that (b) and (c) have large DOS at the Fermi energy, 
EF. 
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and that it is metallic, could possibly imply 
that its distortion to the insulating diamond, 
or to the semimetallic graphite, is in some 
way related to a Peierls-like effect. This is 
not so, because the degeneracy in the 
Peierls case is related to symmetry, 
whereas here it is an accidental degeneracy 
originating from a level crossing. This is in 
analogy with molecular transition states, 
which also are geometrically unstable, but 
not in the Jahn-Teller sense (1). 

The actual mechanism of the high-pres- 
sure transformation of graphite to diamond 
(II) is certainly much more complex than 
the model we have studied. First of all, 
rhombohedral graphite is rare, and is al- 
ways found together with hexagonal graph- 
ite (II). Hexagonal graphite, however, can- 
not yield a diamond structure, as illustrated 
on Scheme 8, unless the approach of the 
graphite planes is coupled to some in-plane 
slip in some of these planes. For instance, 
slipping leading to AA packing will lead to 
hexagonal diamond. A more complicated 
slip pattern leading to ABC packing (effec- 
tively rhombohedral) can then lead to cubic 
diamond. A further complication is that cat- 
alysts and heat treatment change the trans- 
formation appreciably ( 1 I c) . The fact that if 
shear is applied in addition to high pressure 
the minimal temperature and pressure re- 
quired for the transformation is lowered 
(1Zf) fits into the present picture. 

The interconversion of graphite and dia- 
mond may also involve nucleation and 
growth (2, llg, 22). These 

SCHEME 8 

could be 

thought of as solid state analogs of noncon- 
certed or step-wise processes, which we 
know intervene in the molecular case when 
orbital symmetry barriers are imposed. 

Nevertheless there is utility in thinking 
about the concerted bulk transformation. 
The region over which the transformation 
takes place synchronously, even if not ex- 
tending over the whole crystal, may be 
modeled by a synchronous bulk transfor- 
mation. 

Applications of these ideas to transfor- 
mations of boron nitride (3), are planned. 
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